A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especia...A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.展开更多
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient volt...A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.展开更多
Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation si...Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation situation,divergence and vertical velocity field,and the vertical profile of temperature and humidity are synthesized and analyzed.The basic characteristics of the circulation and physical field of sea fog under low pressure control(L type sea fog)are obtained,and the results are compared with the sea fog under the control of high pressure(H type sea fog):a)L type sea fogs potential height anomaly disturbance is mainly manifested in the low layer,and its average value is-65.66 gpm,gradually weakening upward;b)L type sea fogs inversion structure is weaker than H type sea fogs when it occurs,the fog layer is thicker and the high relative humidity level is high over the fog layer,while the H type sea fogs fog layer has a relatively obvious dry layer;c)L sea fog has three layers of structure at the vertical direction.The first layer 1000-950 hPa is convergence accompanied by weak rise and subsidence,the second layer 950-850 hPa is divergence accompanied by weak subsidence,and the third layer 850 to 500hPa is gradually strengthened.While there are two layer structures of the H type sea fog.1000 hPa is divergence accompanied by weak rising and sinking movement,950-500 hPa is a uniform subsidence movement.d)Probability density statistical analysis further quantified the vertical movement of L and H type sea fog and the distribution of relative humidity in each layer.These conclusions provide an important reference for forecasting the sea fog in the northwest of the Yellow Sea under the condition of low pressure circulation in summer.展开更多
This paper presents the field oriented vector control scheme for synchronous reluctance motor (SRM) drives, where current controller followed by hysteresis comparator is used. The test motor has a star-connected wound...This paper presents the field oriented vector control scheme for synchronous reluctance motor (SRM) drives, where current controller followed by hysteresis comparator is used. The test motor has a star-connected wound stator and a segmental rotor of the multiple barrier type with an external incremental encoder to sense rotor position. The magnetic characteristics of this motor are described using 2D finite element method, which is used firstly for rotor design of SRM. The field oriented vector control, that regulates the speed of the SRM, is provided by a quadrature axis current command developed by the speed controller. The simulation includes all realistic components of the system. This enables the calculation of currents and voltages in different parts of the voltage source inverter (VSI) and motor under transient and steady state conditions. Implementation has been done in MATLAB/Simulink. A study of hysteresis control scheme associated with current controllers has been made. Experimental results of the SRM control using TMS320F24X DSP board are presented. The speed of the SRM is successfully controlled in the constant torque region. Experimental results of closed loop speed control of the SRM are given to verify the proposed scheme.展开更多
A novel two-dimensional (2D) simulation method of positive corona current pulses is proposed. A control-volume- based finite element method (CV-FEM) is used to solve continuity equations, and the Galerkin finite e...A novel two-dimensional (2D) simulation method of positive corona current pulses is proposed. A control-volume- based finite element method (CV-FEM) is used to solve continuity equations, and the Galerkin finite element method (FEM) is used to solve Poisson's equation. In the proposed method, photoionization is considered by adopting an exact Helmholtz photoionization model. Furthermore, fully implicit discretization and variable time step are used to ensure the time-efficiency of the present method. Finally, the method is applied to a positive rod-plane corona problem. The numerical results are in agreement with the experimental results, and the validity of the proposed method is verified.展开更多
This paper proposes a gain scheduled control method for a doubly fed induction generator driven by a wind turbine. The purpose is to design a variable speed control system so as to extract the maximum power in the reg...This paper proposes a gain scheduled control method for a doubly fed induction generator driven by a wind turbine. The purpose is to design a variable speed control system so as to extract the maximum power in the region below the rated wind speed. Gain scheduled control approach is applied in order to achieve high performance over a wide range of wind speed. A double loop configuration is adopted. In the inner loop, the rotor speed is used as the scheduling parameter, while a function of wind and rotor speed is used as the scheduling parameter in the outer loop. It is verified in simulations that a high tracking performance has been achieved.展开更多
A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in t...A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in transient-state,while lessening the computational burden and improving the control performance in steady-state.The timescale characteristics of different parts of MPCC,such as signal sampling,prediction calculation,control output,model error correction,are analyzed,and the algorithm architecture of MPCC with multi-timescale is proposed.The difference between reference and actual speed,and the change rate of actual speed are utilized to discriminate the transient state of speed change and load change,respectively.Adaptive-adjusting method of control period and prediction stepsize are illustrated in detail after operation condition discrimination.Experimental results of a PMSM are presented to validate the effectiveness of proposed MPCC.In addition,comparative evaluation of single-step MPCC with fixed timescale and proposed MPCC is conducted,which demonstrates the superiority of proposed control strategy.展开更多
This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flow...This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flows, the dynamics of streamwise vortices in plane Poiseuille flow are very non-normal. Consequently, small perturbations grow rapidly with a large transient that may trigger nonlinearities and lead to turbulence even though such perturbations would, in a linear flow model, eventually decay. Such a system can be described as a conditionally linear system. The sensitivity is measured using the maximum transient energy growth, which is widely used in the fluid dynamics community. The paper considers two approaches. In the first approach, the MoI is used to design low-order proportional and proportional-integral (PI) controllers. In the second one, the MoI is combined with McFarlane and Glover's H∞ loop-shaping design procedure in a mixed-optimization approach.展开更多
Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the tr...Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the transient flow,it is necessary to establish a transient hydraulic-thermal simulation model in order to determine the venting time.In this paper,based on two kinds of venting scenarios in which there is only one venting point in the venting system of a gas trunk pipeline segment—namely,where the venting point is either at one of the two ends or at the junction of two gas trunk pipeline segments—transient hydraulic-thermal simulation models are established.The models consist of gas flow governing equations,the gas state equation,gas physical property equations,initial conditions,and appropriate boundary conditions.The implicit central difference method is used to discretize the gas flow partial differential equations,and the trust-region-dogleg algorithm is used to solve the equations corresponding to each time step,in order to dynamically simulate the whole venting process.The judgment condition for the end of the venting process is that the average pressure of gas trunk pipeline segment is less than 0.11 MPa(actual pressure).Comparing the simulation results of the proposed model with those of the OLGA software and real operational data,we find that the venting time error is less than 10%.On this basis,a venting valve opening control principle is proposed,which prevents the venting noise from exceeded the specified noise value(85 d B)in the venting design of domestic gas pipeline projects.The established calculation model for venting time(dynamic simulation model)for a gas trunk pipeline segment and the proposed opening control principle of venting valve provide reference for the optimal operation of gas pipeline venting systems.展开更多
This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current...This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current(DC)with the boost converter.Power Factor Correction(PFC)is progressively significant to achieve high energy efficiency.The overall system efficiency can be increased as the bridgeless topology has less conduction losses from rectifying bridges.Also,the bridgeless and interleaved techniques are incorporated in this study to achieve better performance.The performance of the system is analyzed on both current control and sensor-less techniques.Different controllers such as Proportional Integral(PI)control,peak current control,Non-Linear Carrier(NLC)control,and sensor-less current control are integrated.All the above controllers are implemented using MATrix LABoratory(MATLAB)/SIMULINK.The performance parameter,namely Power Factor(PF),Total Harmonic Distortion(THD),is computed for both open loop and closed loop condition.The sensor-less current control method is implemented using the DsPIC30F2010 controller.The circuit performance is also verified from the simulation and hardware results.The proposed controller has inbuilt Analog-to-Digital Converter(ADC),Digital-to-Analog Converter(DAC),Pulse Width Modulation(PWM)generator,and provides fast responses.展开更多
This research work brings out the unique predictive current control method for attaining an efficient grid connected Photo Voltaic (PV) system by Shunt Active Power Filter (SAPF) as grid connected converter. The major...This research work brings out the unique predictive current control method for attaining an efficient grid connected Photo Voltaic (PV) system by Shunt Active Power Filter (SAPF) as grid connected converter. The major objective of the research work is to address the presence of Direct Current (DC) component, frequency improvement, quicker theta response, voltage magnitude estimation in the input signal of the Phase Locked Loop (PLL) which is challenging. This work focuses on tuning the PLL block (K<sub>p</sub>, K<sub>i</sub>, K<sub>v</sub> and K<sub>o</sub>) through Artificial Bee Colony (ABC) optimization algorithm. The proposed ABC based modified three-phase PLL method is based on adding a new loop inside the PLL structure. In power converters, ABC algorithm is used to select the optimal switching states. The voltage vector which minimizes a cost optimization function is selected. Simulation is carried out for both balanced and unbalanced system and the results validate that the performance of the proposed approach is better in terms of harmonic compensation as per the IEEE standards within ±5%, power factor improvement of the system, quicker theta tracking and suppression of frequency jump with the interconnection of PV system.展开更多
To satisfy the requirement of developing a new generation of motorized treadmill for a famous domestic manufacturer, a brushless DC motor (BLDCM) driving and control system for motorized treadmill is developed. High...To satisfy the requirement of developing a new generation of motorized treadmill for a famous domestic manufacturer, a brushless DC motor (BLDCM) driving and control system for motorized treadmill is developed. High integration and reliability of this system are ensured under the condition that intelligent power module (IPM) is used and the protection module is included. Periodic current control method is applied to reduce the average current flowing through the armature winding of the motor when the treadmill is required to start with low speed while large load is added. Piecewise proportion-integration-differentiation (PID) control algorithm is applied to solve the problem of speed fluctuation when impulse load is added. The motorized treadmill of a new generation with the driving and control system has the advantages of high reliability, good speed stability, wide timing scope, low cost, and long life-span. And it is very promising for practical applications.展开更多
Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten th...Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten the safety of the microgrid. Therefore, it is imperative to conduct a comprehensive fault analysis of the inverter to guide the design of protection schemes. However, due to the complexity of droop control strategy, existing literatures have simplified asymmetric fault analysis of droop-controlled inverters to varying degrees. Therefore, accurate fault analysis of a droop-controlled inverter is needed. In this paper, by analyzing the control system, an accurate fault model is established. Based on this, a calculation method for instantaneous asymmetrical fault current is proposed. In addition, the current components and current characteristics are analyzed. It was determined that fault currents are affected by control loops, fault types, fault distance and nonlinear limiters. In particular, the influences of limiters on the fault model, fault current calculation and fault current characteristics were analyzed. Through detailed analysis, it was found that dynamics of the control loop cannot be ignored, the fault type and fault distance determine fault current level, and part of the limiters will totally change the fault current trend. Finally, calculation and experimental results verify the correctness of the proposed method.展开更多
This paper presents a new control strategy based on current differential feedback to accelerate the dynamic response of electromagnetic actuators, instead of traditional closed-loop control based on displacement feedb...This paper presents a new control strategy based on current differential feedback to accelerate the dynamic response of electromagnetic actuators, instead of traditional closed-loop control based on displacement feedback. The method mainly includes a differentiator, proportioner and signal synthesizer. Analysis and simulation on the step characteristics of an electromagnetic actuator were discussed, and all the results show that the approach can improve the actuator's step response greatly. Finally, the control method is applied to a real gravure system which verifies the control performance.展开更多
In order to charge batteries and supply all the electrical devices like wheel-motors used in a heavy-duty hybrid electric vehicle, a solution consists in using an assembly permanent magnet generator driven by a diesel...In order to charge batteries and supply all the electrical devices like wheel-motors used in a heavy-duty hybrid electric vehicle, a solution consists in using an assembly permanent magnet generator driven by a diesel engine and a three-phase insulated gate bipolar transistor/diodes bridge controlled rectifier connected to the battery. In this work, hysteresis current control strategies combined with a judicious current sensing mode for the assembly permanent magnet synchronous machine-controlled rectifier are investigated. Main issues first concern the different kinds of transistors switching modes allowed by the proposed current sensing mode when the machine operates either as a generator or as a motor. Second, the modulated hysteresis method is presented, which merges the performances of robustness and dynamic of the classical hysteresis method and imposes the switching frequency alike pulsewidth modulation techniques. A test bench at reduced power permits to test the switching modes as well as classical and modulated hysteresis methods for both motor and generator operating modes and to validate the simulation predictions. The digital signal processor algorithm elaborated for the control strategy is flexible and adaptable to all kinds of transistor switchings and machine operating modes.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 51137004,61427806 and 51577184the Equipment Development Project of Chinese Academy of Sciences under Grant No YZ201507
文摘A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.
基金supported by the National Natural Science Foundation of China(Grant No.51307124)the Major Program of the National Natural Science Foundation of China(Grant No.51190105)
文摘A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.
基金supported by National Natural Science Foundation of China(No.41576108 and No.41605006)Natural Science Foundation project of Shandong Province(No.ZR2016DB26).
文摘Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation situation,divergence and vertical velocity field,and the vertical profile of temperature and humidity are synthesized and analyzed.The basic characteristics of the circulation and physical field of sea fog under low pressure control(L type sea fog)are obtained,and the results are compared with the sea fog under the control of high pressure(H type sea fog):a)L type sea fogs potential height anomaly disturbance is mainly manifested in the low layer,and its average value is-65.66 gpm,gradually weakening upward;b)L type sea fogs inversion structure is weaker than H type sea fogs when it occurs,the fog layer is thicker and the high relative humidity level is high over the fog layer,while the H type sea fogs fog layer has a relatively obvious dry layer;c)L sea fog has three layers of structure at the vertical direction.The first layer 1000-950 hPa is convergence accompanied by weak rise and subsidence,the second layer 950-850 hPa is divergence accompanied by weak subsidence,and the third layer 850 to 500hPa is gradually strengthened.While there are two layer structures of the H type sea fog.1000 hPa is divergence accompanied by weak rising and sinking movement,950-500 hPa is a uniform subsidence movement.d)Probability density statistical analysis further quantified the vertical movement of L and H type sea fog and the distribution of relative humidity in each layer.These conclusions provide an important reference for forecasting the sea fog in the northwest of the Yellow Sea under the condition of low pressure circulation in summer.
文摘This paper presents the field oriented vector control scheme for synchronous reluctance motor (SRM) drives, where current controller followed by hysteresis comparator is used. The test motor has a star-connected wound stator and a segmental rotor of the multiple barrier type with an external incremental encoder to sense rotor position. The magnetic characteristics of this motor are described using 2D finite element method, which is used firstly for rotor design of SRM. The field oriented vector control, that regulates the speed of the SRM, is provided by a quadrature axis current command developed by the speed controller. The simulation includes all realistic components of the system. This enables the calculation of currents and voltages in different parts of the voltage source inverter (VSI) and motor under transient and steady state conditions. Implementation has been done in MATLAB/Simulink. A study of hysteresis control scheme associated with current controllers has been made. Experimental results of the SRM control using TMS320F24X DSP board are presented. The speed of the SRM is successfully controlled in the constant torque region. Experimental results of closed loop speed control of the SRM are given to verify the proposed scheme.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB209402)the National Natural Science Foundation of China(Grant No.51177041)the Fundamental Research Funds for the Central Universities,China(Grant No.12QX01)
文摘A novel two-dimensional (2D) simulation method of positive corona current pulses is proposed. A control-volume- based finite element method (CV-FEM) is used to solve continuity equations, and the Galerkin finite element method (FEM) is used to solve Poisson's equation. In the proposed method, photoionization is considered by adopting an exact Helmholtz photoionization model. Furthermore, fully implicit discretization and variable time step are used to ensure the time-efficiency of the present method. Finally, the method is applied to a positive rod-plane corona problem. The numerical results are in agreement with the experimental results, and the validity of the proposed method is verified.
文摘This paper proposes a gain scheduled control method for a doubly fed induction generator driven by a wind turbine. The purpose is to design a variable speed control system so as to extract the maximum power in the region below the rated wind speed. Gain scheduled control approach is applied in order to achieve high performance over a wide range of wind speed. A double loop configuration is adopted. In the inner loop, the rotor speed is used as the scheduling parameter, while a function of wind and rotor speed is used as the scheduling parameter in the outer loop. It is verified in simulations that a high tracking performance has been achieved.
基金supported in part by the National Natural Science Foundation of China under Grant 52077054in part by the Natural Science Foundation of Hebei Province under Grant E2019202092+2 种基金in part by the China Postdoctoral Science Foundation under Grant 2021T140077 and 2020M681446in part by the State Key Laboratory of Reliability and Intelligence of Electrical Equipment under Grant EERI_PI2020002in part by the Funds for Creative Research Groups of Hebei Province under Grant E2020202142.
文摘A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in transient-state,while lessening the computational burden and improving the control performance in steady-state.The timescale characteristics of different parts of MPCC,such as signal sampling,prediction calculation,control output,model error correction,are analyzed,and the algorithm architecture of MPCC with multi-timescale is proposed.The difference between reference and actual speed,and the change rate of actual speed are utilized to discriminate the transient state of speed change and load change,respectively.Adaptive-adjusting method of control period and prediction stepsize are illustrated in detail after operation condition discrimination.Experimental results of a PMSM are presented to validate the effectiveness of proposed MPCC.In addition,comparative evaluation of single-step MPCC with fixed timescale and proposed MPCC is conducted,which demonstrates the superiority of proposed control strategy.
文摘This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flows, the dynamics of streamwise vortices in plane Poiseuille flow are very non-normal. Consequently, small perturbations grow rapidly with a large transient that may trigger nonlinearities and lead to turbulence even though such perturbations would, in a linear flow model, eventually decay. Such a system can be described as a conditionally linear system. The sensitivity is measured using the maximum transient energy growth, which is widely used in the fluid dynamics community. The paper considers two approaches. In the first approach, the MoI is used to design low-order proportional and proportional-integral (PI) controllers. In the second one, the MoI is combined with McFarlane and Glover's H∞ loop-shaping design procedure in a mixed-optimization approach.
基金supported by the National Natural Science Foundation of China(Grant No.52174064)
文摘Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the transient flow,it is necessary to establish a transient hydraulic-thermal simulation model in order to determine the venting time.In this paper,based on two kinds of venting scenarios in which there is only one venting point in the venting system of a gas trunk pipeline segment—namely,where the venting point is either at one of the two ends or at the junction of two gas trunk pipeline segments—transient hydraulic-thermal simulation models are established.The models consist of gas flow governing equations,the gas state equation,gas physical property equations,initial conditions,and appropriate boundary conditions.The implicit central difference method is used to discretize the gas flow partial differential equations,and the trust-region-dogleg algorithm is used to solve the equations corresponding to each time step,in order to dynamically simulate the whole venting process.The judgment condition for the end of the venting process is that the average pressure of gas trunk pipeline segment is less than 0.11 MPa(actual pressure).Comparing the simulation results of the proposed model with those of the OLGA software and real operational data,we find that the venting time error is less than 10%.On this basis,a venting valve opening control principle is proposed,which prevents the venting noise from exceeded the specified noise value(85 d B)in the venting design of domestic gas pipeline projects.The established calculation model for venting time(dynamic simulation model)for a gas trunk pipeline segment and the proposed opening control principle of venting valve provide reference for the optimal operation of gas pipeline venting systems.
文摘This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current(DC)with the boost converter.Power Factor Correction(PFC)is progressively significant to achieve high energy efficiency.The overall system efficiency can be increased as the bridgeless topology has less conduction losses from rectifying bridges.Also,the bridgeless and interleaved techniques are incorporated in this study to achieve better performance.The performance of the system is analyzed on both current control and sensor-less techniques.Different controllers such as Proportional Integral(PI)control,peak current control,Non-Linear Carrier(NLC)control,and sensor-less current control are integrated.All the above controllers are implemented using MATrix LABoratory(MATLAB)/SIMULINK.The performance parameter,namely Power Factor(PF),Total Harmonic Distortion(THD),is computed for both open loop and closed loop condition.The sensor-less current control method is implemented using the DsPIC30F2010 controller.The circuit performance is also verified from the simulation and hardware results.The proposed controller has inbuilt Analog-to-Digital Converter(ADC),Digital-to-Analog Converter(DAC),Pulse Width Modulation(PWM)generator,and provides fast responses.
文摘This research work brings out the unique predictive current control method for attaining an efficient grid connected Photo Voltaic (PV) system by Shunt Active Power Filter (SAPF) as grid connected converter. The major objective of the research work is to address the presence of Direct Current (DC) component, frequency improvement, quicker theta response, voltage magnitude estimation in the input signal of the Phase Locked Loop (PLL) which is challenging. This work focuses on tuning the PLL block (K<sub>p</sub>, K<sub>i</sub>, K<sub>v</sub> and K<sub>o</sub>) through Artificial Bee Colony (ABC) optimization algorithm. The proposed ABC based modified three-phase PLL method is based on adding a new loop inside the PLL structure. In power converters, ABC algorithm is used to select the optimal switching states. The voltage vector which minimizes a cost optimization function is selected. Simulation is carried out for both balanced and unbalanced system and the results validate that the performance of the proposed approach is better in terms of harmonic compensation as per the IEEE standards within ±5%, power factor improvement of the system, quicker theta tracking and suppression of frequency jump with the interconnection of PV system.
文摘To satisfy the requirement of developing a new generation of motorized treadmill for a famous domestic manufacturer, a brushless DC motor (BLDCM) driving and control system for motorized treadmill is developed. High integration and reliability of this system are ensured under the condition that intelligent power module (IPM) is used and the protection module is included. Periodic current control method is applied to reduce the average current flowing through the armature winding of the motor when the treadmill is required to start with low speed while large load is added. Piecewise proportion-integration-differentiation (PID) control algorithm is applied to solve the problem of speed fluctuation when impulse load is added. The motorized treadmill of a new generation with the driving and control system has the advantages of high reliability, good speed stability, wide timing scope, low cost, and long life-span. And it is very promising for practical applications.
基金supported by National Natural Science Foundation of China under Grant 51977066。
文摘Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten the safety of the microgrid. Therefore, it is imperative to conduct a comprehensive fault analysis of the inverter to guide the design of protection schemes. However, due to the complexity of droop control strategy, existing literatures have simplified asymmetric fault analysis of droop-controlled inverters to varying degrees. Therefore, accurate fault analysis of a droop-controlled inverter is needed. In this paper, by analyzing the control system, an accurate fault model is established. Based on this, a calculation method for instantaneous asymmetrical fault current is proposed. In addition, the current components and current characteristics are analyzed. It was determined that fault currents are affected by control loops, fault types, fault distance and nonlinear limiters. In particular, the influences of limiters on the fault model, fault current calculation and fault current characteristics were analyzed. Through detailed analysis, it was found that dynamics of the control loop cannot be ignored, the fault type and fault distance determine fault current level, and part of the limiters will totally change the fault current trend. Finally, calculation and experimental results verify the correctness of the proposed method.
基金Project supported by the Science and Technology Plan of Zhejiang Province (No. 2008C11028), China
文摘This paper presents a new control strategy based on current differential feedback to accelerate the dynamic response of electromagnetic actuators, instead of traditional closed-loop control based on displacement feedback. The method mainly includes a differentiator, proportioner and signal synthesizer. Analysis and simulation on the step characteristics of an electromagnetic actuator were discussed, and all the results show that the approach can improve the actuator's step response greatly. Finally, the control method is applied to a real gravure system which verifies the control performance.
文摘In order to charge batteries and supply all the electrical devices like wheel-motors used in a heavy-duty hybrid electric vehicle, a solution consists in using an assembly permanent magnet generator driven by a diesel engine and a three-phase insulated gate bipolar transistor/diodes bridge controlled rectifier connected to the battery. In this work, hysteresis current control strategies combined with a judicious current sensing mode for the assembly permanent magnet synchronous machine-controlled rectifier are investigated. Main issues first concern the different kinds of transistors switching modes allowed by the proposed current sensing mode when the machine operates either as a generator or as a motor. Second, the modulated hysteresis method is presented, which merges the performances of robustness and dynamic of the classical hysteresis method and imposes the switching frequency alike pulsewidth modulation techniques. A test bench at reduced power permits to test the switching modes as well as classical and modulated hysteresis methods for both motor and generator operating modes and to validate the simulation predictions. The digital signal processor algorithm elaborated for the control strategy is flexible and adaptable to all kinds of transistor switchings and machine operating modes.