期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Efficiency and Effectiveness Method versus ε-NTU Method with Application in Finned Flat Tube Compact Heat Exchanger with Water-Ethylene Glycol as Nanofluid Base of Iron Oxide Nanoparticles
1
作者 Élcio Nogueira 《Journal of Materials Science and Chemical Engineering》 2022年第2期1-17,共17页
This work aims to establish comparisons between two models used for the performance of heat exchangers. The chosen system, in this case, consists of a heat exchanger used in automotive radiators flat finned tube type.... This work aims to establish comparisons between two models used for the performance of heat exchangers. The chosen system, in this case, consists of a heat exchanger used in automotive radiators flat finned tube type. Water and ethylene glycol compound as base fluid and volume fractions of iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub>) are used as a refrigerant. The quantities determined in this work are the nanofluid exit temperature, the air exit temperature, the absolute error between the models for heat transfer rate, and Effectiveness. The quantities that constitute parameters, independent variables, are the airflow, represented by the Reynolds number, and the iron oxide volume fraction. Ethylene Glycol 50% compound has slightly better thermal performance than pure water and reduces the reactive effect of water on the environment, increasing the average life of the equipment. The absolute relative error between the models is less than 20% and presents maximum values with the increase of the nanoparticle volume fraction and growth in the Reynolds number for the air. 展开更多
关键词 Efficiency and effectiveness Method ε-NTU Method Compact Heat Exchanger Iron Oxid Nanoparticles NANOFLUID
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部