期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of a second metal(Co,Fe, Mo and W) on performance of Ni_2P/SiO_2 for hydrodeoxygenation of methyl laurate 被引量:4
1
作者 Zhengyi Pan Rijie Wang +1 位作者 Ziyang Nie Jixiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期418-426,共9页
NiP/SiOand bimetallic Ni MP/Si O2(M = Co, Fe, Mo, W; Ni/M atomic ratio=5) catalysts were prepared by the temperature-programmed reduction method. The catalysts and their precursors were characterized by means of UV–V... NiP/SiOand bimetallic Ni MP/Si O2(M = Co, Fe, Mo, W; Ni/M atomic ratio=5) catalysts were prepared by the temperature-programmed reduction method. The catalysts and their precursors were characterized by means of UV–Vis DRS, H-TPR, XRD, TEM, CO chemisorption and NH-TPD. Their performance for the deoxygenation of methyl laurate was tested on a fixed-bed reactor. The results show that the main phase was NiP in all catalysts, and M(M = Co, Fe, Mo, W) entered the lattice of NiP forming solid solution. Different from Fe and Co, the introduction of Mo and W into NiP/SiOreduced the phosphide particle size and increased the acid amount. In the deoxygenation reaction, the turnover frequency of methyl laurate increased on the catalysts in the order of NiMoP/SiO, NiP/SiO, Ni WP/Si O2, NiFeP/SiOand NiCoP/SiO, which is influenced by the size of phosphide particles and the interaction between Ni and M(M = Fe, Co, Mo or W). The introduction of the second metal(especially Mo and W) into NiP/SiOpromoted the hydrodeoxygenation pathway. This is mainly attributed to the interaction between Ni and the second metal. Finally, the Ni MoP/SiOcatalyst was tested at 340 oC, 3 MPa, methyl laurate WHSV of 14 h-1and H/methyl laurate molar ratio of 25 for 132 h, and its deactivation took place. We found that the catalyst deactivation mainly resulted from carbonaceous deposit rather than the sintering of metal phosphide crystallites. 展开更多
关键词 Bimetallic phosphide Solid solution methyl laurate HYDRODEOXYGENATION DECARBONYLATION
下载PDF
Deoxygenation of methyl laurate to hydrocarbons on silica-supported Ni-Mo phosphides: Effect of calcination temperatures of precursor 被引量:2
2
作者 Zhengyi Pan Rijie Wang +2 位作者 Mingfeng Li Yang Chu Jixiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期77-86,共10页
SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by me... SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by means of ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM), CO chemisorption, H2 and NH3 temperature-programmed desorptions (H2-TPD and NH3-TPD). Their catalytic performances for the deoxygena- tion of methyl laurate were tested in a fixed-bed reactor. When the precursors were calcined at 400 and 500 ℃, respectively, NiMoP2 phase could be formed apart from Ni2P and MoP phases in the prepared C400 and C500 catalysts. However, when the precursors were calcined at 600, 700 and 800 ℃, respectively, only Ni2P and MoP phases could be detected in the prepared C600, C700 and C800 catalysts. Also, in C400, C500 and C600 catalysts, Mo atoms were found to be entered in the lattice of Ni2P phase, but the entering extent became less with the increase of calcination temperature. As the calcination temperature of the precursor increased, the interaction between Ni and Mo in the prepared catalysts decreased, and the phosphide crystallite size tended to increase, subsequently leading to the decrease in the surface metal site density and the acid amount. C600 catalyst showed the highest activity among the tested ones for the deoxygenation of methyl laurate. As the calcination temperature of the precursor increased, the selectivity to C12 hydrocarbons decreased while the selectivity to C11 hydrocarbons tended to increase. This can be mainly attributed to the decreased Ni-Mo interaction and the increased phosphide particle size. In sum, the structure and performance of Ni-Mo bimetallic phosphide catalyst can be tuned by the calcination temperature of precursor. 展开更多
关键词 metal phosphide calcination temperature methyl laurate hydrodeoxygenation DECARBONYLATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部