The 12-molybdosphoric acid mixed with titania (MPA-TiO2) was found to be a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) via transesterification of dimethyl carbonate (DMC) and pheno...The 12-molybdosphoric acid mixed with titania (MPA-TiO2) was found to be a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) via transesterification of dimethyl carbonate (DMC) and phenol. The X-ray diffraction (XRD) and infrared (IR) techniques were employed to characterize the prepared catalysts. The effect of the weight ratio of the 12-molybdosphoric acid to titania on the transesterification was investigated. A 13.1% yield of DPC and an 11.6% yield of methyl phenyl carbonate (MPC) were obtained over MPA-TiO2 with the weight ratio of MPA to TiO2 as 5:1.展开更多
Synthesis of methyl N-phenyl carbamate from dimethyl carbonate and 1,3-diphenyl urea was investigated under atmospheric pressure. The results showed that homogenous catalyst sodium methoxide had the excellent activity...Synthesis of methyl N-phenyl carbamate from dimethyl carbonate and 1,3-diphenyl urea was investigated under atmospheric pressure. The results showed that homogenous catalyst sodium methoxide had the excellent activity to efficiently catalyze the synthesis of methyl N-phenyl carbamate under atmospheric pressure.展开更多
A reaction coupling system of transesterification and methoxycarbonylation with methyl phenyl carbonate (MPC) as intermediate was established to efficiently prepare 1,6-hexamethylene diurethane (HDU) from 1,6- bex...A reaction coupling system of transesterification and methoxycarbonylation with methyl phenyl carbonate (MPC) as intermediate was established to efficiently prepare 1,6-hexamethylene diurethane (HDU) from 1,6- bexametbylene diamine (HDA). The feasibility of the system was explored using the thermodynamics analysis, the reaction mechanism and the experiment results. The optimal reaction was carried out to get higher HDU yield. The thermodynamic analysis showed that the metboxycarbonylation of HDA with MPC, the Gibbs free energy of which was negative, was a spontaneous process. Furthermore, the equilibrium constant of the methoxycarbonylation of HDA with MPC was much greater than that of the transesterification of dimethyl carbonate (DMC) with phenol, so the reaction coupling could be realized under mild conditions. The reaction mechanism analysis indicated that phenoxy anion was the key spedes for reaction coupling. Higher MPC concentration was detected when sodium phenoxide was used as transesterification reactant with DMC, since the phenoxy anion of sodium phenoxide could be dissociated more easily. Sodium pbenoxide was more suitable to prepare HHDU through reaction coupling. A yield of HDU as high as 98.3% could be reached under the optimal conditions of mPhONa/mDMC = 0.027 and nDMC/nHDa = 8/1 at 90 ℃ in 2 h.展开更多
The effect of 1-Phenyl-3-Methyl Pyrazol-5-one (HPMP) on the electrical properties of high carbon steel in Hydrochloric acid (HCI), Trioxonitrate (v) acid (HNO3) and Perchloric acid (HCIO4) was studied by weight loss m...The effect of 1-Phenyl-3-Methyl Pyrazol-5-one (HPMP) on the electrical properties of high carbon steel in Hydrochloric acid (HCI), Trioxonitrate (v) acid (HNO3) and Perchloric acid (HCIO4) was studied by weight loss method. The acidic medium caused a complete degradation of the electrical properties of the coated and uncoated high carbon steel. However, the attack was more on the uncoated coupons, which showed that HPHP is an effective corrosion inhibitor. HNO3 had the most severe effect on the metal. The coupons coated with HPMP generally had higher values of resistance (0.0155 Ω) and conductivity (6.20 mho/m) in HCI environment than the uncoated coupons (0.0043 Ω) and (1.72 mho/m). Similar results were obtained for HNO3 and HCIO4 environments. These values are lower than the values obtained for as-received coupons: -0.0466 and 8.64 mho/m respectively.展开更多
文摘The 12-molybdosphoric acid mixed with titania (MPA-TiO2) was found to be a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) via transesterification of dimethyl carbonate (DMC) and phenol. The X-ray diffraction (XRD) and infrared (IR) techniques were employed to characterize the prepared catalysts. The effect of the weight ratio of the 12-molybdosphoric acid to titania on the transesterification was investigated. A 13.1% yield of DPC and an 11.6% yield of methyl phenyl carbonate (MPC) were obtained over MPA-TiO2 with the weight ratio of MPA to TiO2 as 5:1.
文摘Synthesis of methyl N-phenyl carbamate from dimethyl carbonate and 1,3-diphenyl urea was investigated under atmospheric pressure. The results showed that homogenous catalyst sodium methoxide had the excellent activity to efficiently catalyze the synthesis of methyl N-phenyl carbamate under atmospheric pressure.
基金Supported by the National Natural Science Foundation of China(21276126,21306089)the Jiangsu Province Higher Education Natural Science Foundation(09KJA530004,13KJB530006)
文摘A reaction coupling system of transesterification and methoxycarbonylation with methyl phenyl carbonate (MPC) as intermediate was established to efficiently prepare 1,6-hexamethylene diurethane (HDU) from 1,6- bexametbylene diamine (HDA). The feasibility of the system was explored using the thermodynamics analysis, the reaction mechanism and the experiment results. The optimal reaction was carried out to get higher HDU yield. The thermodynamic analysis showed that the metboxycarbonylation of HDA with MPC, the Gibbs free energy of which was negative, was a spontaneous process. Furthermore, the equilibrium constant of the methoxycarbonylation of HDA with MPC was much greater than that of the transesterification of dimethyl carbonate (DMC) with phenol, so the reaction coupling could be realized under mild conditions. The reaction mechanism analysis indicated that phenoxy anion was the key spedes for reaction coupling. Higher MPC concentration was detected when sodium phenoxide was used as transesterification reactant with DMC, since the phenoxy anion of sodium phenoxide could be dissociated more easily. Sodium pbenoxide was more suitable to prepare HHDU through reaction coupling. A yield of HDU as high as 98.3% could be reached under the optimal conditions of mPhONa/mDMC = 0.027 and nDMC/nHDa = 8/1 at 90 ℃ in 2 h.
文摘The effect of 1-Phenyl-3-Methyl Pyrazol-5-one (HPMP) on the electrical properties of high carbon steel in Hydrochloric acid (HCI), Trioxonitrate (v) acid (HNO3) and Perchloric acid (HCIO4) was studied by weight loss method. The acidic medium caused a complete degradation of the electrical properties of the coated and uncoated high carbon steel. However, the attack was more on the uncoated coupons, which showed that HPHP is an effective corrosion inhibitor. HNO3 had the most severe effect on the metal. The coupons coated with HPMP generally had higher values of resistance (0.0155 Ω) and conductivity (6.20 mho/m) in HCI environment than the uncoated coupons (0.0043 Ω) and (1.72 mho/m). Similar results were obtained for HNO3 and HCIO4 environments. These values are lower than the values obtained for as-received coupons: -0.0466 and 8.64 mho/m respectively.