DNA methylation plays an important role in plant growth and development,and in regulating the activity of transposable elements(TEs).Research on DNA methylation-related(DMR)genes has been reported in Arabidopsis,but l...DNA methylation plays an important role in plant growth and development,and in regulating the activity of transposable elements(TEs).Research on DNA methylation-related(DMR)genes has been reported in Arabidopsis,but little research on DMR genes has been reported in Brassica rapa and Brassica oleracea,the genomes of which exhibit significant differences in TE content.In this study,we identified 78 and 77 DMR genes in Brassica rapa and Brassica oleracea,respectively.Detailed analysis revealed that the numbers of DMR genes in different DMR pathways varied in B.rapa and B.oleracea.The evolutionary selection pressure of DMR genes in B.rapa and B.oleracea was compared,and the DMR genes showed differential evolution between these two species.The nucleotide diversity(π)and selective sweep(Tajima’s D)revealed footprints of selection in the B.rapa and B.oleracea populations.Transcriptome analysis showed that most DMR genes exhibited similar expression characteristics in B.rapa and B.oleracea.This study dissects the evolutionary differences and genetic variations of the DMR genes in B.rapa and B.oleracea,and will provide valuable resources for future research on the divergent evolution of DNA methylation between B.rapa and B.oleracea.展开更多
BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,...BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,several studies use genes involved in essential cellular functions[glyceraldehyde-3-phosphate dehydro-genase(GAPDH),18S rRNA,andβ-actin]without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes.Furthermore,such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recom-mend two or more genes.It impacts the credibility of these studies and causes dis-tortions in the gene expression findings.For tissue engineering,the accuracy of gene expression drives the best experimental or therapeutical approaches.We cultivated DPSCs under two conditions:Undifferentiated and osteogenic dif-ferentiation,both for 35 d.We evaluated the gene expression of 10 candidates for RGs[ribosomal protein,large,P0(RPLP0),TATA-binding protein(TBP),GAPDH,actin beta(ACTB),tubulin(TUB),aminolevulinic acid synthase 1(ALAS1),tyro-sine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,zeta(YWHAZ),eukaryotic translational elongation factor 1 alpha(EF1a),succinate dehydrogenase complex,subunit A,flavoprotein(SDHA),and beta-2-micro-globulin(B2M)]every 7 d(1,7,14,21,28,and 35 d)by RT-qPCR.The data were analysed by the four main algorithms,ΔCt method,geNorm,NormFinder,and BestKeeper and ranked by the RefFinder method.We subdivided the samples into eight subgroups.RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm.The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs.Either theΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes.However,geNorm analysis showed RPLP0/EF1αin the first place.These algorithms’two least stable RGs were B2M/GAPDH.For BestKeeper,ALAS1 was ranked as the most stable RG,and SDHA as the least stable RG.The pair RPLP0/TBP was detected in most subgroups as the most stable RGs,following the RefFinfer ranking.CONCLUSION For the first time,we show that RPLP0/TBP are the most stable RGs,whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn...BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.展开更多
Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton ...Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.展开更多
Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (...Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (DAFB) higher levels of indoleacetic acid (IAA) and tryptophan (Trp) in calyx persistence fruitlet (CPF) than calyx shedding fruitlet (CSF) ofDanshan Suli’ pear (Pyrus bretschneideri Rhed.). Consisting with this, the activity of indolealdehyde oxidase (IAAIdO), which promotes IAA synthesis, was remarkably increased, and that of peroxidase(POD), which degrades IAA, dropped markedly in CPF but not in CSF. Further, qRT-PCR results revealed that most of 31 PbrARFs (encoding auxin response factors) in Pyrus bretschneideri were highly expressed in CPF, whereas PbrARF4, PbrARF24 and PbrARF26 were significantly downregulated in CPF vis-a-vis CSF. Phylogenetic analysis revealed that 6 PbrARFs clustered in the group III, where PbrARF4 showed the closest affinity with AtARF1 that promotes organ abscission, indicating a putative role of PbrARF4 in mediating the process of calyx shedding in pear. In fact, the ectopic overexpression of PbrARF4 in Solanum lycopersicum resulted in an earlier-formed and deeper abscission layer (AL) in the transgenic plants, whose calyxes were more prone to wilt at the mature red stage (MR) compared with the control plants (wild-type). More importantly, expression levels of the abscission genes SILS and Sl Cel2 in transgenic plants overexpressing PbrARF4 were significantly upregulated in comparation with the WT, whereas those of Sl BI and Sl TAPG2 were considerably inhibited. Further, PbrJOINTLESS and PbrIDA,the two genes related to calyx shedding in pear, were up-regulated more in CSF than CPF. The findings contribute to a better understanding of PbrARFs involved in fruitlet calyx shedding of pear, which could prove beneficial to improving the quality of pear fruit.展开更多
Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotto...Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.展开更多
BACKGROUND Gastric cancer(GC)is a common malignancy of the digestive system.According to global 2018 cancer data,GC has the fifth-highest incidence and the thirdhighest fatality rate among malignant tumors.More than 6...BACKGROUND Gastric cancer(GC)is a common malignancy of the digestive system.According to global 2018 cancer data,GC has the fifth-highest incidence and the thirdhighest fatality rate among malignant tumors.More than 60%of GC are linked to infection with Helicobacter pylori(H.pylori),a gram-negative,active,microaerophilic,and helical bacterium.This parasite induces GC by producing toxic factors,such as cytotoxin-related gene A,vacuolar cytotoxin A,and outer membrane proteins.Ferroptosis,or iron-dependent programmed cell death,has been linked to GC,although there has been little research on the link between H.pylori infection-related GC and ferroptosis.AIM To identify coregulated differentially expressed genes among ferroptosis-related genes(FRGs)in GC patients and develop a ferroptosis-related prognostic model with discrimination ability.METHODS Gene expression profiles of GC patients and those with H.pylori-associated GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus(GEO)databases.The FRGs were acquired from the FerrDb database.A ferroptosis-related gene prognostic index(FRGPI)was created using least absolute shrinkage and selection operator–Cox regression.The predictive ability of the FRGPI was validated in the GEO cohort.Finally,we verified the expression of the hub genes and the activity of the ferroptosis inducer FIN56 in GC cell lines and tissues.RESULTS Four hub genes were identified(NOX4,MTCH1,GABARAPL2,and SLC2A3)and shown to accurately predict GC and H.pylori-associated GC.The FRGPI based on the hub genes could independently predict GC patient survival;GC patients in the high-risk group had considerably worse overall survival than did those in the low-risk group.The FRGPI was a significant predictor of GC prognosis and was strongly correlated with disease progression.Moreover,the gene expression levels of common immune checkpoint proteins dramatically increased in the highrisk subgroup of the FRGPI cohort.The hub genes were also confirmed to be highly overexpressed in GC cell lines and tissues and were found to be primarily localized at the cell membrane.The ferroptosis inducer FIN56 inhibited GC cell proliferation in a dose-dependent manner.CONCLUSION In this study,we developed a predictive model based on four FRGs that can accurately predict the prognosis of GC patients and the efficacy of immunotherapy in this population.展开更多
AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE1024...AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.展开更多
Jujube witches’broom(JWB)caused by phytoplasma has a severely negative effect on multiple metabolisms in jujube.The GST gene family in plants participates in the regulation of a variety of biotic and abiotic stresses...Jujube witches’broom(JWB)caused by phytoplasma has a severely negative effect on multiple metabolisms in jujube.The GST gene family in plants participates in the regulation of a variety of biotic and abiotic stresses.This study aims to identify and reveal the changes in the jujube GST gene family in response to phytoplasma infection.Here,70 ZjGSTs were identified in the jujube genome and divided into 8 classes.Among them,the Tau-class,including 44 genes,was the largest.Phylogenetic analysis indicated that Tau-class genes were highly conserved among species,such as Arabidopsis,cotton,chickpea,and rice.Through chromosome location analysis,37.1%of genes were clustered,and 8 of 9 gene clusters were composed of Tau class members.Through RT-PCR,qRT-PCR and enzyme activity detection,the results showed that the expression of half(20/40)of the tested ZjGSTs was inhibited by phytoplasma infection in field and tissue culture conditions,and GST activity was also significantly reduced.In the resistant and susceptible varieties under phytoplasma infection,ZjGSTU49-ZjGSTU54 in the cluster IV showed opposite expression patterns,which may be due to functional divergence during evolution.Some upregulated genes(ZjGSTU45,ZjGSTU49,ZjGSTU59,and ZjGSTU70)might be involved in the process of jujube against JWB.The yeast two-hybrid results showed that all 6 Tauclass proteins tested could form homodimers or heterodimers.Overall,the comprehensive analysis of the jujube GST gene family revealed that ZjGSTs responded actively to phytoplasma infection.Furthermore,some screened genes(ZjGSTU24,ZjGSTU49-52,ZjGSTU70,and ZjDHAR10)will contribute to further functional studies of jujube-phytoplasma interactions.展开更多
Objective The prognosis of glioblastoma is poor,and therapy-resistance is largely attributed to intratumor hypoxia.Hyperbaric oxygen(HBO)effectively alleviates hypoxia.However,the sole role of HBO in glioblastoma rema...Objective The prognosis of glioblastoma is poor,and therapy-resistance is largely attributed to intratumor hypoxia.Hyperbaric oxygen(HBO)effectively alleviates hypoxia.However,the sole role of HBO in glioblastoma remains controversial.We previously reported that HBO can promote apoptosis,shorten protrusions,and delay growth of glioblastoma,but the molecular mechanism is unclear.We aimed to test candidate genes in HBO-exposed glioblastoma cells and to analyze their correlation with the survival of glioblastoma patients.Methods Glioblastoma cell lines exposed to repetitive HBO or normobaric air(NBA)were collected for RNA isolation and microarray data analysis.GO analysis,KEGG pathway analysis and survival analysis of the differentially expressed genes(DEGs)were performed.Results HBO not only inhibited hypoxia-inducing genes including CA9,FGF11,PPFIA4,TCAF2 and SLC2A12,but also regulated vascularization by downregulating the expression of COL1A1,COL8A1,COL12A1,RHOJ and FILIP1L,ultimately attenuated hypoxic microenvironment of glioblastoma.HBO attenuated inflammatory microenvironment by reducing the expression of NLRP2,CARD8,MYD88 and CD180.HBO prevented metastasis by downregulating the expression of NTM,CXCL12,CXCL13,CXCR4,CXCR5,CDC42,IGFBP3,IGFBP5,GPC6,MMP19,ADAMTS1,EFEMP1,PTBP3,NF1 and PDCD1.HBO upregulated the expression of BAK1,PPIF,DDIT3,TP53I11 and FAS,whereas downregulated the expression of MDM4 and SIVA1,thus promoting apoptosis.HBO upregulated the expression of CDC25A,MCM2,PCNA,RFC33,DSCC1 and CDC14A,whereas downregulated the expression of ASNS,CDK6,CDKN1B,PTBP3 and MAD2L1,thus inhibiting cell cycle progression.Among these DEGs,17 indicator-genes of HBO prolonging survival were detected.Conclusions HBO is beneficial for glioblastoma.Glioblastoma patients with these predictive indicators may prolong survival with HBO therapy.These potential therapeutic targets especially COL1A1,ADAMTS1 and PTBP3 deserve further validation.展开更多
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using...The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.展开更多
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the preval...BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.展开更多
Castor is one of the top 10 oil crops in the world and has extremely valuable uses.Castor inflorescences directly affect yield,so the study of inflorescence development is very important in increasing castor yield.Our...Castor is one of the top 10 oil crops in the world and has extremely valuable uses.Castor inflorescences directly affect yield,so the study of inflorescence development is very important in increasing castor yield.Our previous studies have shown that the PIP5K gene family(PIP5Ks)is associated with inflorescence development.In this study,to determine the function of each PIP5K gene in castor,a female Lm-type castor line,aLmAB2,was used to determine the relative expression levels of the PIP5Ks in castor inflorescences.Six PIP5K genes were heterologously overexpressed in Arabidopsis thaliana,the relative expression of each gene and the effect on plants was determined in A.thaliana,and the relationships among the PIP5Ks in castor were inferred.The expression levels of the PIP5Ks in the female Lm-type castor line aLmAB2 were analyzed.The relative expression levels of the PIP5K9 and PIP5K11 genes were high(p<0.05)in isofemale inflorescences,and those of PIP5K1,PIP5K2,PIP5K6,and PIP5K8 were high(p<0.05)in female inflorescences but low(p<0.05)in bisexual inflorescences.The PIP5Ks were heterologously overexpressed in A.thaliana,and T3-generation plants with stable genetic resistance,i.e.,AT-PIP5K^(+)plants(AT-PIP5K1^(+),AT-PIP5K2^(+),AT-PIP5K6^(+),AT-PIP5K8^(+),AT-PIP5K9^(+),and ATPIP5K11^(+) plants),were obtained.Biological tests of the AT-PIP5K+plants showed that the growth of the main stem was significantly delayed in AT-PIP5K+plants compared with Columbia wild-type(WT)A.thaliana plants;the PIP5K1 and PIP5K2 genes promoted lateral stem growth and flower and silique development;and the PIP5K6,PIP5K8,PIP5K9 and PIP5K11 genes inhibited lateral stem growth and flower and silique development.The correlations among PIP5Ks in castor suggest that there may be a synergistic relationship among PIP5K1,PIP5K2,and PIP5K6 in castor inflorescences,and PIP5K8,PIP5K9,and PIP5K11 are complementary to the other three genes.展开更多
Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using co...Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.展开更多
BACKGROUND Breast cancer(BC),a leading malignant disease,affects women all over the world.Cancer associated fibroblasts(CAFs)stimulate epithelial-mesenchymal transition,and induce chemoresistance and immunosuppression...BACKGROUND Breast cancer(BC),a leading malignant disease,affects women all over the world.Cancer associated fibroblasts(CAFs)stimulate epithelial-mesenchymal transition,and induce chemoresistance and immunosuppression.AIM To establish a CAFs-associated prognostic signature to improve BC patient out-come estimation.METHODS We retrieved the transcript profile and clinical data of 1072 BC samples from The Cancer Genome Atlas(TCGA)databases,and 3661 BC samples from the The Gene Expression Omnibus.CAFs and immune cell infiltrations were quantified using CIBERSORT algorithm.CAF-associated gene identification was done by weighted gene co-expression network analysis.A CAF risk signature was established via univariate,least absolute shrinkage and selection operator regression,and mul-tivariate Cox regression analyses.The receiver operating characteristic(ROC)and Kaplan-Meier curves were employed to evaluate the predictability of the model.Subsequently,a nomogram was developed with the risk score and patient clinical signature.Using Spearman's correlations analysis,the relationship between CAF risk score and gene set enrichment scores were examined.Patient samples were collected to validate gene expression by quantitative real-time polymerase chain reaction(qRT-PCR).RESULTS Employing an 8-gene(IL18,MYD88,GLIPR1,TNN,BHLHE41,DNAJB5,FKBP14,and XG)signature,we attemp-ted to estimate BC patient prognosis.Based on our analysis,high-risk patients exhibited worse outcomes than low-risk patients.Multivariate analysis revealed the risk score as an independent indicator of BC patient prognosis.ROC analysis exhibited satisfactory nomogram predictability.The area under the curve showed 0.805 at 3 years,and 0.801 at 5 years in the TCGA cohort.We also demonstrated that a reduced CAF risk score was strongly associated with enhanced chemotherapeutic outcomes.CAF risk score was significantly correlated with most hallmark gene sets.Finally,the prognostic signature were further validated by qRT-PCR.CONCLUSION We introduced a newly-discovered CAFs-associated gene signature,which can be employed to estimate BC patient outcomes conveniently and accurately.展开更多
Antibiotic resistance has become a major threat to human health worldwide. Environment, particularly the water environment, has long been overlooked as a player in the antibiotic resistance cycle, although its role re...Antibiotic resistance has become a major threat to human health worldwide. Environment, particularly the water environment, has long been overlooked as a player in the antibiotic resistance cycle, although its role remains unclear. These can provide an ideal setting for the acquisition and dissemination of antibiotic resistance, as they are frequently affected by anthropogenic activities. The objective of this study was to establish a diffusion map of resistance integrons used as genetic markers of resistance associated with antibiotic resistance conferring genes (ARGs). Total DNA extracts from non-cultivable bacterial communities were used for the analyses. These communities were obtained from wastewater samples from 14 sites upstream and downstream of drainage channels or effluents in the cities of Abidjan, Bouaké, and Yamoussoukro. The results obtained correspond to the number of positives among the treated samples (n = 39). Among the genetic markers of dissemination, class 1 integrons were the most evident in 94.8% of samples in Abidjan (93.3%), Bouaké (100%) and Yamoussoukro (91.6%). Class 2 integrons and class 3 integrons were found respectively in 41% and 51% of all samples. Genes coding for β-lactamases and blaTEM was identified in almost all samples at a rate of 97.4%. A co-presence of the three genes blaTEM, blaSHV and blaCTX-M is also remarkable in the sites of the city of Yamoussoukro. Among the genes coding for carbapenemases, only blaKPC 17.94%, blaNDM 30.76% and blaOXA48 38.46% were detected in the samples.展开更多
Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the ma...Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.展开更多
Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet...Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.展开更多
The mechanisms underlying sex determination and differentiation have long intrigued researchers in the fields of development and evolutionary biology.The roughskin sculpin(Trachidermus fasciatus Heckel),displaying sex...The mechanisms underlying sex determination and differentiation have long intrigued researchers in the fields of development and evolutionary biology.The roughskin sculpin(Trachidermus fasciatus Heckel),displaying sexual dimorphism,provides an ideal model for studying the mechanisms.However,both genetic and genomic information concerning sex determination and differentiation,such as gonadal transcriptome data in roughskin sculpin,are lacking.Here,we present the first gonadal transcriptomes of roughskin sculpin and identify sex-related genes.We identified 8531 differentially expressed genes(DEGs),among them 4065 were upregulated in the ovary and 4466 upregulated in the testis.Several sex-related gene ontology(GO)terms were enriched in ovary-biased genes,including“binding of sperm to zona pellucida”,“egg coat formation”,“positive regulation of acrosome reaction”,“cell division”,and“cell cycle”,while the GO terms such as“spermatogenesis”,“sperm axoneme assembly”,“cilium assembly”,“cilium movement”,and“cilium movement involved in cell motility”were enriched in testis-biased genes.Moreover,six KEGG pathways were significantly enriched in the ovary,whereas only one was enriched in the testis.Of these DEGs,40 sex-related genes were identified,which including 26 testis-biased genes(such as Dmrtb 1,Gsdf,Sox 9 b,Wnt 4 b,Tcp 11 l 2,and Efhb),and 14 ovary-biased genes(such as Cyp 19 a 1 a,Foxh 1,Foxr 1,Gdf 3,Hsd 17 b 12,and Igf 2 bp 3).This gonadal transcript dataset would broaden our understanding of sex determination and differentiation mechanisms in roughskin sculpin,expand the genomic database,support future studies on sex-related gene functions,and facilitate molecular biology research into roughskin sculpin.展开更多
With rising living standards,there is an increasing demand for high-quality rice.Rice quality is mainly defined by milling quality,appearance quality,cooking and eating quality,and nutrition quality.Among them,chalkin...With rising living standards,there is an increasing demand for high-quality rice.Rice quality is mainly defined by milling quality,appearance quality,cooking and eating quality,and nutrition quality.Among them,chalkiness is a key trait for appearance quality,which adversely affects cooking and eating quality,head rice yield,and commercial value.Therefore,chalkiness is undesirable,and reducing chalkiness is a major goal in rice quality improvement.However,chalkiness is a complex trait jointly influenced by genetic and environmental factors,making its genetic study and precision improvement a huge challenge.With the rapid development of molecular techniques,much knowledge has been gained about the genes and molecular networks involved in chalkiness formation.The present review describes the major environmental factors affecting chalkiness and summarizes the quantitative trait loci(QTL)associated with chalkiness.More than 150 genes related to chalkiness formation have been reported.The functions of the genes regulating chalkiness,primarily those involved in starch synthesis,storage protein synthesis,transcription regulation,organelle development,grain shape regulation,and hightemperature response,are described.Finally,we identify the challenges associated with genetic improvement of chalkiness and suggest potential strategies.Thus,the review offers insight into the molecular dynamics of chalkiness and provides a strong basis for the future breeding of high-quality rice varieties.展开更多
基金supported by the National Natural Science Foundation of China (NSFC31872105 and 31801862)the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences, and the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, China
文摘DNA methylation plays an important role in plant growth and development,and in regulating the activity of transposable elements(TEs).Research on DNA methylation-related(DMR)genes has been reported in Arabidopsis,but little research on DMR genes has been reported in Brassica rapa and Brassica oleracea,the genomes of which exhibit significant differences in TE content.In this study,we identified 78 and 77 DMR genes in Brassica rapa and Brassica oleracea,respectively.Detailed analysis revealed that the numbers of DMR genes in different DMR pathways varied in B.rapa and B.oleracea.The evolutionary selection pressure of DMR genes in B.rapa and B.oleracea was compared,and the DMR genes showed differential evolution between these two species.The nucleotide diversity(π)and selective sweep(Tajima’s D)revealed footprints of selection in the B.rapa and B.oleracea populations.Transcriptome analysis showed that most DMR genes exhibited similar expression characteristics in B.rapa and B.oleracea.This study dissects the evolutionary differences and genetic variations of the DMR genes in B.rapa and B.oleracea,and will provide valuable resources for future research on the divergent evolution of DNA methylation between B.rapa and B.oleracea.
基金Supported by São Paulo Research Foundation(FAPESP),No.2010/08918-9 and 2020/11564-6the KBSP Young Investigator Fellowship,No.2011/00204-0+2 种基金the DBF Fellowship,No.2019/27492-7the LMG Fellowship,No.2014/01395-1the CFB Fellowship,No.2014/14278-3.
文摘BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,several studies use genes involved in essential cellular functions[glyceraldehyde-3-phosphate dehydro-genase(GAPDH),18S rRNA,andβ-actin]without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes.Furthermore,such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recom-mend two or more genes.It impacts the credibility of these studies and causes dis-tortions in the gene expression findings.For tissue engineering,the accuracy of gene expression drives the best experimental or therapeutical approaches.We cultivated DPSCs under two conditions:Undifferentiated and osteogenic dif-ferentiation,both for 35 d.We evaluated the gene expression of 10 candidates for RGs[ribosomal protein,large,P0(RPLP0),TATA-binding protein(TBP),GAPDH,actin beta(ACTB),tubulin(TUB),aminolevulinic acid synthase 1(ALAS1),tyro-sine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,zeta(YWHAZ),eukaryotic translational elongation factor 1 alpha(EF1a),succinate dehydrogenase complex,subunit A,flavoprotein(SDHA),and beta-2-micro-globulin(B2M)]every 7 d(1,7,14,21,28,and 35 d)by RT-qPCR.The data were analysed by the four main algorithms,ΔCt method,geNorm,NormFinder,and BestKeeper and ranked by the RefFinder method.We subdivided the samples into eight subgroups.RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm.The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs.Either theΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes.However,geNorm analysis showed RPLP0/EF1αin the first place.These algorithms’two least stable RGs were B2M/GAPDH.For BestKeeper,ALAS1 was ranked as the most stable RG,and SDHA as the least stable RG.The pair RPLP0/TBP was detected in most subgroups as the most stable RGs,following the RefFinfer ranking.CONCLUSION For the first time,we show that RPLP0/TBP are the most stable RGs,whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.
基金Supported by National Natural Science Foundation of China,No.82100594.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.
基金supported by the Jiangsu Natural Science Foundation,China(BK20231468)the Fundamental Research Funds for the Central Universities,China(ZJ24195012)+3 种基金the National Natural Science Foundation in China(31871668)the Jiangsu Key R&D Program,China(BE2022384)the Xinjiang Uygur Autonomous Region Science and Technology Support Program,China(2021E02003)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project,China(No.10)。
文摘Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.
基金supported by the China Agriculture Research System (Grant No.CARS-28-14)。
文摘Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (DAFB) higher levels of indoleacetic acid (IAA) and tryptophan (Trp) in calyx persistence fruitlet (CPF) than calyx shedding fruitlet (CSF) ofDanshan Suli’ pear (Pyrus bretschneideri Rhed.). Consisting with this, the activity of indolealdehyde oxidase (IAAIdO), which promotes IAA synthesis, was remarkably increased, and that of peroxidase(POD), which degrades IAA, dropped markedly in CPF but not in CSF. Further, qRT-PCR results revealed that most of 31 PbrARFs (encoding auxin response factors) in Pyrus bretschneideri were highly expressed in CPF, whereas PbrARF4, PbrARF24 and PbrARF26 were significantly downregulated in CPF vis-a-vis CSF. Phylogenetic analysis revealed that 6 PbrARFs clustered in the group III, where PbrARF4 showed the closest affinity with AtARF1 that promotes organ abscission, indicating a putative role of PbrARF4 in mediating the process of calyx shedding in pear. In fact, the ectopic overexpression of PbrARF4 in Solanum lycopersicum resulted in an earlier-formed and deeper abscission layer (AL) in the transgenic plants, whose calyxes were more prone to wilt at the mature red stage (MR) compared with the control plants (wild-type). More importantly, expression levels of the abscission genes SILS and Sl Cel2 in transgenic plants overexpressing PbrARF4 were significantly upregulated in comparation with the WT, whereas those of Sl BI and Sl TAPG2 were considerably inhibited. Further, PbrJOINTLESS and PbrIDA,the two genes related to calyx shedding in pear, were up-regulated more in CSF than CPF. The findings contribute to a better understanding of PbrARFs involved in fruitlet calyx shedding of pear, which could prove beneficial to improving the quality of pear fruit.
基金supported by the State Key Laboratory of Aridland Crop Science,Gansu Agricultural University,China(GSCS-2019-10)the National Natural Science Foundation of China(31801414 and 32260478)+2 种基金the Gansu Province Science and Technology Program,China(20JR10RA531)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01E103)the Education Technology Innovation Project of Gansu Province,China(2022QB-076)。
文摘Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.
文摘BACKGROUND Gastric cancer(GC)is a common malignancy of the digestive system.According to global 2018 cancer data,GC has the fifth-highest incidence and the thirdhighest fatality rate among malignant tumors.More than 60%of GC are linked to infection with Helicobacter pylori(H.pylori),a gram-negative,active,microaerophilic,and helical bacterium.This parasite induces GC by producing toxic factors,such as cytotoxin-related gene A,vacuolar cytotoxin A,and outer membrane proteins.Ferroptosis,or iron-dependent programmed cell death,has been linked to GC,although there has been little research on the link between H.pylori infection-related GC and ferroptosis.AIM To identify coregulated differentially expressed genes among ferroptosis-related genes(FRGs)in GC patients and develop a ferroptosis-related prognostic model with discrimination ability.METHODS Gene expression profiles of GC patients and those with H.pylori-associated GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus(GEO)databases.The FRGs were acquired from the FerrDb database.A ferroptosis-related gene prognostic index(FRGPI)was created using least absolute shrinkage and selection operator–Cox regression.The predictive ability of the FRGPI was validated in the GEO cohort.Finally,we verified the expression of the hub genes and the activity of the ferroptosis inducer FIN56 in GC cell lines and tissues.RESULTS Four hub genes were identified(NOX4,MTCH1,GABARAPL2,and SLC2A3)and shown to accurately predict GC and H.pylori-associated GC.The FRGPI based on the hub genes could independently predict GC patient survival;GC patients in the high-risk group had considerably worse overall survival than did those in the low-risk group.The FRGPI was a significant predictor of GC prognosis and was strongly correlated with disease progression.Moreover,the gene expression levels of common immune checkpoint proteins dramatically increased in the highrisk subgroup of the FRGPI cohort.The hub genes were also confirmed to be highly overexpressed in GC cell lines and tissues and were found to be primarily localized at the cell membrane.The ferroptosis inducer FIN56 inhibited GC cell proliferation in a dose-dependent manner.CONCLUSION In this study,we developed a predictive model based on four FRGs that can accurately predict the prognosis of GC patients and the efficacy of immunotherapy in this population.
基金Supported by Scientific Research Project of Xianning Central Hospital in 2022 (No.2022XYB020)Science and Technology Plan Project of Xianning Municipal in 2022 (No.2022SFYF014).
文摘AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.
基金supported by grants from the National Key R&D Program Project Funding(Grant No.2018YFD1000607)the Foundation for 100 Innovative Talents of Hebei Province(Grant No.SLRC2019031)+1 种基金the National Natural Science Foundation of China(Grant No.31772285)the Hebei Province Innovation Foundation for Postgraduates(Grant No.CXZZBS2020097)。
文摘Jujube witches’broom(JWB)caused by phytoplasma has a severely negative effect on multiple metabolisms in jujube.The GST gene family in plants participates in the regulation of a variety of biotic and abiotic stresses.This study aims to identify and reveal the changes in the jujube GST gene family in response to phytoplasma infection.Here,70 ZjGSTs were identified in the jujube genome and divided into 8 classes.Among them,the Tau-class,including 44 genes,was the largest.Phylogenetic analysis indicated that Tau-class genes were highly conserved among species,such as Arabidopsis,cotton,chickpea,and rice.Through chromosome location analysis,37.1%of genes were clustered,and 8 of 9 gene clusters were composed of Tau class members.Through RT-PCR,qRT-PCR and enzyme activity detection,the results showed that the expression of half(20/40)of the tested ZjGSTs was inhibited by phytoplasma infection in field and tissue culture conditions,and GST activity was also significantly reduced.In the resistant and susceptible varieties under phytoplasma infection,ZjGSTU49-ZjGSTU54 in the cluster IV showed opposite expression patterns,which may be due to functional divergence during evolution.Some upregulated genes(ZjGSTU45,ZjGSTU49,ZjGSTU59,and ZjGSTU70)might be involved in the process of jujube against JWB.The yeast two-hybrid results showed that all 6 Tauclass proteins tested could form homodimers or heterodimers.Overall,the comprehensive analysis of the jujube GST gene family revealed that ZjGSTs responded actively to phytoplasma infection.Furthermore,some screened genes(ZjGSTU24,ZjGSTU49-52,ZjGSTU70,and ZjDHAR10)will contribute to further functional studies of jujube-phytoplasma interactions.
基金supported by Fundamental-Clinical Research Cooperation Fund of Capital Medical University[No.17JL(TTZX)]Capital’s Funds for Health Improvement and Research(No.2022-2-1072).
文摘Objective The prognosis of glioblastoma is poor,and therapy-resistance is largely attributed to intratumor hypoxia.Hyperbaric oxygen(HBO)effectively alleviates hypoxia.However,the sole role of HBO in glioblastoma remains controversial.We previously reported that HBO can promote apoptosis,shorten protrusions,and delay growth of glioblastoma,but the molecular mechanism is unclear.We aimed to test candidate genes in HBO-exposed glioblastoma cells and to analyze their correlation with the survival of glioblastoma patients.Methods Glioblastoma cell lines exposed to repetitive HBO or normobaric air(NBA)were collected for RNA isolation and microarray data analysis.GO analysis,KEGG pathway analysis and survival analysis of the differentially expressed genes(DEGs)were performed.Results HBO not only inhibited hypoxia-inducing genes including CA9,FGF11,PPFIA4,TCAF2 and SLC2A12,but also regulated vascularization by downregulating the expression of COL1A1,COL8A1,COL12A1,RHOJ and FILIP1L,ultimately attenuated hypoxic microenvironment of glioblastoma.HBO attenuated inflammatory microenvironment by reducing the expression of NLRP2,CARD8,MYD88 and CD180.HBO prevented metastasis by downregulating the expression of NTM,CXCL12,CXCL13,CXCR4,CXCR5,CDC42,IGFBP3,IGFBP5,GPC6,MMP19,ADAMTS1,EFEMP1,PTBP3,NF1 and PDCD1.HBO upregulated the expression of BAK1,PPIF,DDIT3,TP53I11 and FAS,whereas downregulated the expression of MDM4 and SIVA1,thus promoting apoptosis.HBO upregulated the expression of CDC25A,MCM2,PCNA,RFC33,DSCC1 and CDC14A,whereas downregulated the expression of ASNS,CDK6,CDKN1B,PTBP3 and MAD2L1,thus inhibiting cell cycle progression.Among these DEGs,17 indicator-genes of HBO prolonging survival were detected.Conclusions HBO is beneficial for glioblastoma.Glioblastoma patients with these predictive indicators may prolong survival with HBO therapy.These potential therapeutic targets especially COL1A1,ADAMTS1 and PTBP3 deserve further validation.
文摘The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.
文摘BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.
基金National Natural Science Foundation of China(31860071)Ministry of Education New Agricultural Research and Reform Practice Program(2020114)+4 种基金Surface Program of Inner Mongolia Natural Science Foundation(2021MS03008)Inner Mongolia Autonomous Region Grassland Talent Innovation Team-Rolling Support Program for Castor Molecular Breeding Research Innovation Talent Teams(2022)2023 Inner Mongolia Autonomous Region Science and Technology Department Establishes the Project of Key Laboratory Construction of Castor Breeding and Comprehensive Utilization in Inner Mongolia Autonomous RegionInner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region Project(237)Open Fund Project of Castor Industry Collaborative Innovation Center of Inner Mongolia Autonomous Region(MDK2021011,MDK2022014).
文摘Castor is one of the top 10 oil crops in the world and has extremely valuable uses.Castor inflorescences directly affect yield,so the study of inflorescence development is very important in increasing castor yield.Our previous studies have shown that the PIP5K gene family(PIP5Ks)is associated with inflorescence development.In this study,to determine the function of each PIP5K gene in castor,a female Lm-type castor line,aLmAB2,was used to determine the relative expression levels of the PIP5Ks in castor inflorescences.Six PIP5K genes were heterologously overexpressed in Arabidopsis thaliana,the relative expression of each gene and the effect on plants was determined in A.thaliana,and the relationships among the PIP5Ks in castor were inferred.The expression levels of the PIP5Ks in the female Lm-type castor line aLmAB2 were analyzed.The relative expression levels of the PIP5K9 and PIP5K11 genes were high(p<0.05)in isofemale inflorescences,and those of PIP5K1,PIP5K2,PIP5K6,and PIP5K8 were high(p<0.05)in female inflorescences but low(p<0.05)in bisexual inflorescences.The PIP5Ks were heterologously overexpressed in A.thaliana,and T3-generation plants with stable genetic resistance,i.e.,AT-PIP5K^(+)plants(AT-PIP5K1^(+),AT-PIP5K2^(+),AT-PIP5K6^(+),AT-PIP5K8^(+),AT-PIP5K9^(+),and ATPIP5K11^(+) plants),were obtained.Biological tests of the AT-PIP5K+plants showed that the growth of the main stem was significantly delayed in AT-PIP5K+plants compared with Columbia wild-type(WT)A.thaliana plants;the PIP5K1 and PIP5K2 genes promoted lateral stem growth and flower and silique development;and the PIP5K6,PIP5K8,PIP5K9 and PIP5K11 genes inhibited lateral stem growth and flower and silique development.The correlations among PIP5Ks in castor suggest that there may be a synergistic relationship among PIP5K1,PIP5K2,and PIP5K6 in castor inflorescences,and PIP5K8,PIP5K9,and PIP5K11 are complementary to the other three genes.
文摘Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.
文摘BACKGROUND Breast cancer(BC),a leading malignant disease,affects women all over the world.Cancer associated fibroblasts(CAFs)stimulate epithelial-mesenchymal transition,and induce chemoresistance and immunosuppression.AIM To establish a CAFs-associated prognostic signature to improve BC patient out-come estimation.METHODS We retrieved the transcript profile and clinical data of 1072 BC samples from The Cancer Genome Atlas(TCGA)databases,and 3661 BC samples from the The Gene Expression Omnibus.CAFs and immune cell infiltrations were quantified using CIBERSORT algorithm.CAF-associated gene identification was done by weighted gene co-expression network analysis.A CAF risk signature was established via univariate,least absolute shrinkage and selection operator regression,and mul-tivariate Cox regression analyses.The receiver operating characteristic(ROC)and Kaplan-Meier curves were employed to evaluate the predictability of the model.Subsequently,a nomogram was developed with the risk score and patient clinical signature.Using Spearman's correlations analysis,the relationship between CAF risk score and gene set enrichment scores were examined.Patient samples were collected to validate gene expression by quantitative real-time polymerase chain reaction(qRT-PCR).RESULTS Employing an 8-gene(IL18,MYD88,GLIPR1,TNN,BHLHE41,DNAJB5,FKBP14,and XG)signature,we attemp-ted to estimate BC patient prognosis.Based on our analysis,high-risk patients exhibited worse outcomes than low-risk patients.Multivariate analysis revealed the risk score as an independent indicator of BC patient prognosis.ROC analysis exhibited satisfactory nomogram predictability.The area under the curve showed 0.805 at 3 years,and 0.801 at 5 years in the TCGA cohort.We also demonstrated that a reduced CAF risk score was strongly associated with enhanced chemotherapeutic outcomes.CAF risk score was significantly correlated with most hallmark gene sets.Finally,the prognostic signature were further validated by qRT-PCR.CONCLUSION We introduced a newly-discovered CAFs-associated gene signature,which can be employed to estimate BC patient outcomes conveniently and accurately.
文摘Antibiotic resistance has become a major threat to human health worldwide. Environment, particularly the water environment, has long been overlooked as a player in the antibiotic resistance cycle, although its role remains unclear. These can provide an ideal setting for the acquisition and dissemination of antibiotic resistance, as they are frequently affected by anthropogenic activities. The objective of this study was to establish a diffusion map of resistance integrons used as genetic markers of resistance associated with antibiotic resistance conferring genes (ARGs). Total DNA extracts from non-cultivable bacterial communities were used for the analyses. These communities were obtained from wastewater samples from 14 sites upstream and downstream of drainage channels or effluents in the cities of Abidjan, Bouaké, and Yamoussoukro. The results obtained correspond to the number of positives among the treated samples (n = 39). Among the genetic markers of dissemination, class 1 integrons were the most evident in 94.8% of samples in Abidjan (93.3%), Bouaké (100%) and Yamoussoukro (91.6%). Class 2 integrons and class 3 integrons were found respectively in 41% and 51% of all samples. Genes coding for β-lactamases and blaTEM was identified in almost all samples at a rate of 97.4%. A co-presence of the three genes blaTEM, blaSHV and blaCTX-M is also remarkable in the sites of the city of Yamoussoukro. Among the genes coding for carbapenemases, only blaKPC 17.94%, blaNDM 30.76% and blaOXA48 38.46% were detected in the samples.
基金supported by the National Key Research and Development Program of China(2023YFD1200600 to Xiaoya Lin)National Natural Science Foundation of China(32090060 to Fanjiang Kong,32001568 to Xiaoya Lin,31930083 to Baohui Liu,and 31901500 to Tiantian Bu)China Postdoctoral Science Foundation(2019 M652839 to Liyu Chen)。
文摘Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.
基金supported by the Taipei Tzu Chi Hospital through grants from the Buddhist Tzu Chi Medical Foundation under the Numbers TCRD-TPE-111-23(2/3)and TCRD-TPE-113-20,Taipei,Taiwan.
文摘Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.
基金Supported by the National Natural Science Foundation of China(Nos.31972793,31502169)the Key Scientific Research Project in Universities and Colleges in Tianjin(No.2022ZD004)。
文摘The mechanisms underlying sex determination and differentiation have long intrigued researchers in the fields of development and evolutionary biology.The roughskin sculpin(Trachidermus fasciatus Heckel),displaying sexual dimorphism,provides an ideal model for studying the mechanisms.However,both genetic and genomic information concerning sex determination and differentiation,such as gonadal transcriptome data in roughskin sculpin,are lacking.Here,we present the first gonadal transcriptomes of roughskin sculpin and identify sex-related genes.We identified 8531 differentially expressed genes(DEGs),among them 4065 were upregulated in the ovary and 4466 upregulated in the testis.Several sex-related gene ontology(GO)terms were enriched in ovary-biased genes,including“binding of sperm to zona pellucida”,“egg coat formation”,“positive regulation of acrosome reaction”,“cell division”,and“cell cycle”,while the GO terms such as“spermatogenesis”,“sperm axoneme assembly”,“cilium assembly”,“cilium movement”,and“cilium movement involved in cell motility”were enriched in testis-biased genes.Moreover,six KEGG pathways were significantly enriched in the ovary,whereas only one was enriched in the testis.Of these DEGs,40 sex-related genes were identified,which including 26 testis-biased genes(such as Dmrtb 1,Gsdf,Sox 9 b,Wnt 4 b,Tcp 11 l 2,and Efhb),and 14 ovary-biased genes(such as Cyp 19 a 1 a,Foxh 1,Foxr 1,Gdf 3,Hsd 17 b 12,and Igf 2 bp 3).This gonadal transcript dataset would broaden our understanding of sex determination and differentiation mechanisms in roughskin sculpin,expand the genomic database,support future studies on sex-related gene functions,and facilitate molecular biology research into roughskin sculpin.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515010400,2023A1515030023)the Discipline Team of Agricultural Competitive Industries in Guangdong Academy of Agricultural Sciences(202101TD)+1 种基金the Special Fund for Scientific Innovation Strategyconstruction of High-level Academy of Agriculture Science(R2023PY-JX001)the Guangdong Key Laboratory of New Technology in Rice Breeding(2023B1212060042).
文摘With rising living standards,there is an increasing demand for high-quality rice.Rice quality is mainly defined by milling quality,appearance quality,cooking and eating quality,and nutrition quality.Among them,chalkiness is a key trait for appearance quality,which adversely affects cooking and eating quality,head rice yield,and commercial value.Therefore,chalkiness is undesirable,and reducing chalkiness is a major goal in rice quality improvement.However,chalkiness is a complex trait jointly influenced by genetic and environmental factors,making its genetic study and precision improvement a huge challenge.With the rapid development of molecular techniques,much knowledge has been gained about the genes and molecular networks involved in chalkiness formation.The present review describes the major environmental factors affecting chalkiness and summarizes the quantitative trait loci(QTL)associated with chalkiness.More than 150 genes related to chalkiness formation have been reported.The functions of the genes regulating chalkiness,primarily those involved in starch synthesis,storage protein synthesis,transcription regulation,organelle development,grain shape regulation,and hightemperature response,are described.Finally,we identify the challenges associated with genetic improvement of chalkiness and suggest potential strategies.Thus,the review offers insight into the molecular dynamics of chalkiness and provides a strong basis for the future breeding of high-quality rice varieties.