The influence of operating parameters and type of zeolite catalysts on formation of ethylene and propylene during catalytic pyrolysis of methylcyclohexane (MCH) was studied in a laboratory fixed fluidized bed reactor....The influence of operating parameters and type of zeolite catalysts on formation of ethylene and propylene during catalytic pyrolysis of methylcyclohexane (MCH) was studied in a laboratory fixed fluidized bed reactor. The results indicated that higher reaction temperature and lower WHSV tended to produce more ethylene and propylene, among which the reaction temperature was an important factor influencing the ethylene formation. Compared with the FAU and BEA type zeolites, the MFI structured zeolite catalyst, thanks to more acid sites and smaller pore diameter of the catalyst, was conducive to the formation of ethylene and propylene. The protonation occurred on different C—C bonds and C—H bonds in the carbon chain of MCH led to different product slates, and the protonation on C—C bonds located at naphthenic ring was favorable to the formation of ethylene and propylene.展开更多
To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects...To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects of iridium content,reduction temperature on the activity and stability of the catalysts were studied in detail.In the presence of Ir,metal particle size was decrea sed and electron transfer between Ir and Pt was observed.High reduction temperature increased the metallic Ir content but enlarged the particle size of active site s.During the dehydrogenation reaction on Pt-Ir bimetallic catalyst,MCH was efficiently converted into toluene and PtIr-5/Mg-Al-275 exhibited the highe st activity.After prolonging the residence time and raising the reaction temperature to 350℃the conversion and hydrogen evolution rate were increased to 99.9%and 578.7 mmol·(g Pt)^-1·min^-1,respectively.Moreover,no carbon deposition was observed in the spent catalyst,presenting a high anti-coking ability and good potential for industrial application.展开更多
In this work, nickel metal supported on different supports(SiO_2, Al_2O_3, ZSM-5) were prepared by spraying nickel nitrate on the supports and calcined at 873 K. Then, they were characterized by XRD, XRF, N_2 adsorpt...In this work, nickel metal supported on different supports(SiO_2, Al_2O_3, ZSM-5) were prepared by spraying nickel nitrate on the supports and calcined at 873 K. Then, they were characterized by XRD, XRF, N_2 adsorption–desorption, NH_3-TPD, MCH-TPD, H_2-TPR, and pyridine-FTIR,and tested as catalysts for the dehydrogenation aromatization and isomerization of methylcyclohexane(MCH) under the conditions of S-Zorb catalytic adsorption desulfurization(T ? 673 K, P ? 1.5 MPa, WHSV ? 5 h^(-1)). The H2-TPR results showed that the interaction of NiO with support decreased in the order of NiO/ZSM-5-Fe < NiO/ZSM-5 < NiO/Al_2O_3< NiO/SiO2. The decrease of the interaction appeared to facilitate the reduction of Ni and therefore to promote the dehydrogenation aromatization of MCH.It was found that a direct correlation existed between the gasoline components yields, cracking activity and the total number of different supports acid sites measured by NH_3-TPD tests. Higher total acidity of ZSM-5 resulted in gasoline loss because of higher cracking activity of MCH. The number of total acid sites of NiO/ZSM-5-Fe decreased and the medium strong Br€onsted acid sites necessary for MCH isomerization increased after the modification of ZSM-5 by iron metal. So, NiO/ZSM-5-Fe exhibited enhanced MCH conversion, aromatic and isomerization yields when compared to NiO/ZSM-5 and other Ni-based catalysts. This study shows that NiO/ZSM-5-Fe catalyst may be possible to be integrated into the S-Zorb system achieving the recovery of the octane number of gasoline.展开更多
Vacuum ultraviolet(VUV)photoionization and photodissociation of methylcyclohexane have been studied utilizing a reflectron time-of-flight mass spectrometer(RTOF-MS)with synchrotron radiation source.Photoionization eff...Vacuum ultraviolet(VUV)photoionization and photodissociation of methylcyclohexane have been studied utilizing a reflectron time-of-flight mass spectrometer(RTOF-MS)with synchrotron radiation source.Photoionization efficiency curves(PIEs)of molecule ion C7H14^+ and fragment ions C7H13^+,C6H11^+,C6H10+,C5H10^+,C5H9^+,C4H8^+,C4H7^+,and C3H5^+ were observed.The ionization energy of methylcyclohexane was measured to be(9.80±0.03)eV,and appearance energies of fragment ions were determined from the PIEs.Optimized structures of transitional states,intermediates and product ions were characterized at the B3LYP/6-31G(d)level and the energies were calculated using G3B3 method.Formation channels of dominating fragment ions were proposed.Intramolecular hydrogen migrations and carbon ring-opening were the foremost processes in fragmentation pathways of methylcyclohexane.展开更多
The catalytic transformation of methylcyclohexane as an accepted probe reaction to evaluate zeolitic acidity(concentration,strength,and accessibility)is employed to study the acidity and the reactivity of three commer...The catalytic transformation of methylcyclohexane as an accepted probe reaction to evaluate zeolitic acidity(concentration,strength,and accessibility)is employed to study the acidity and the reactivity of three commercial dealuminated Y zeolites(DAY)with different Si/Al ratios and meso/microporosities,with their properties analyzed by N_(2) adsorption/desorption,pyridine-IR,and hydroxyl-IR spectroscopy technologies.The global activity(conversion)is largely dependent on the concentration of the acid sites,and the activity of the protonic sites in terms of turnover frequency(TOF)reflects the accessibility of acid sites.The products of aromatics and isomers,and the yield of cracking products increase with the increase of concentration of strong protonic sites in zeolite micropores.Moreover,the decrease of aromatics with the reduction of the concentration of acid sites and the diffusion length within DAY zeolites are observed due to the decrease of the secondary reaction.For the same reason,it results in the increasing of C_(7)products and alkenes/alkanes ratios in the cracking products.The high i-C_(4)product selectivity is a unique reflection of the high percentage of very strong acid sites,which is characterized by the hydroxyl-IR band at 3600 cm^(-1).展开更多
Methylcyclohexane(MCH)serves as an ideal hydrogen carrier in hydrogen storage and transportation process.In the continuous production of hydrogen from MCH dehydrogenation,the rational design of energy-efficient cataly...Methylcyclohexane(MCH)serves as an ideal hydrogen carrier in hydrogen storage and transportation process.In the continuous production of hydrogen from MCH dehydrogenation,the rational design of energy-efficient catalytic way with good performance remains an enormous challenge.Herein,an internal electric heating(IEH)assisted mode was designed and proposed by the directly electrical-driven catalyst using the resistive heating effect.The Pt/Al2O_(3)on Fe foam(Pt/Al2O_(3)/FF)with unique threedimensional network structure was constructed.The catalysts were studied in a comprehensive way including X-ray diffraction(XRD),scanning electron microscopy(SEM)-mapping,in situ extended X-ray absorption fine structure(EXAFS),and in situ COFourier transform infrared(FTIR)measurements.It was found that the hydrogen evolution rate in IEH mode can reach up to above 2060 mmol·gPt^(−1)·min^(−1),which is 2–5 times higher than that of reported Pt based catalysts under similar reaction conditions in conventional heating(CH)mode.In combination with measurements from high-resolution infrared thermometer,the equations of heat transfer rate,and reaction heat analysis results,the Pt/Al2O_(3)/FF not only has high mass and heat transfer ability to promote catalytic performance,but also behaves as the heating component with a low thermal resistance and heat capacity offering a fast temperature response in IEH mode.In addition,the chemical adsorption and activation of MCH molecules can be efficiently facilitated by IEH mode,proved by the operando MCH-FTIR results.Therefore,the as-developed IEH mode can efficiently reduce the heat and mass transfer limitations and prominently boost the dehydrogenation performance,which has a broad application potential in hydrogen storage and other catalytic reaction processes.展开更多
Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcycl...Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcyclohexane(MCH)dehydrogenation.The results demonstrated that the addition of Fe to Pt/Al_(2)O_(3) enhanced the electron density of Pt and improved catalytic activity,while exhibiting negligible influence on the catalytic selectivity for toluene.When the Fe content was 0.057%,the catalyst exhibited the highest MCH consumption rate,which was approximately two times higher than that of the catalyst without Fe.Additionally,the incorporation of Fe inhibited the formation of coke and reduced the quantity of coke deposits on the catalyst,thereby improving its catalytic durability.Overall,Fe shows promise as a prospective secondary element for Pt/Al_(2)O_(3) to enhance the MCH dehydrogenation performance.展开更多
Expanding the hydrogen energy utilization is essential for decarbonization,and the commercialization of hydrogen energy carrier systems that can“store”and“transport”hydrogen in a large scale is necessary.The organ...Expanding the hydrogen energy utilization is essential for decarbonization,and the commercialization of hydrogen energy carrier systems that can“store”and“transport”hydrogen in a large scale is necessary.The organic chemical hydride method incorporates hydrogen atoms into the molecular structure of a LOHC(Liquid Organic Hydrogen Carrier)to store and transport hydrogen in a liquid state under normal temperature and pressure,and is a highly safe method with low business risk.Chiyoda has been developing the technology since 2002,completed a pilot demonstration in 2014 and named it the SPERA Hydrogen^(TM) System,and successfully completed an international supply chain demonstration that transports hydrogen from Brunei to Japan in a large scale in 2020,moving to the commercialization stage.Currently,Chiyoda is conducting feasibility studies with a number of domestic and foreign companies with the aim of commercializing the system as soon as possible.In this paper,outline,features,development status and our efforts in commercialization of SPERA HydrogenTM System are introduced.展开更多
The current basic energy plan of Japan was authorized in the Cabinet in June 2010, in which ambitious energy and environmental targets and policies giving nuclear power a pivotal role toward 2030 were described. At pr...The current basic energy plan of Japan was authorized in the Cabinet in June 2010, in which ambitious energy and environmental targets and policies giving nuclear power a pivotal role toward 2030 were described. At present, the Japanese government has been forced to review the basic energy plan in the wake of the great east Japan earthquake occurred on March 11, 2011 followed by the severe accident at the nuclear power plants in Fukushima. Before the disaster, the IAE (institute of applied energy) had realized that it was not clear how CO2-free hydrogen would contribute to solving various energy and environmental issues, or that prospects were not clear for large demand of CQ-free hydrogen other than FCVs (fuel cell vehicles). In this connection, the authors organized a voluntary "Concept Study Group (in short)" in March 2011 and held four meetings until the end of March 2012. Through the quantitative studies using IAE's simulation model (GRAPE), the common recognition was built in the concept study group that hydrogen could contribute to energy security and increase in zero-emissions electric power ratio in Japan. It was also estimated that global CO2-free hydrogen supply chains could be realized by degrees after 2020. Based on these results, the authors made a proposal that hydrogen should be added in the primary energy constitution for new basic energy plan to the Japanese government because imported hydrogen could be considered as a pseudo-primary energy like LNG (liquefied natural gas). Now, the succeeding "Action Plan Study Group (in short)" has been held focusing on hydrogen demand in various applications, future pictures of CO2-free hydrogen chains and road maps. Activity results of the "Concept Study Group" are shown here.展开更多
基金the financial support of the National Key Technology R & D Program of China (NO.2012BAE05B01)
文摘The influence of operating parameters and type of zeolite catalysts on formation of ethylene and propylene during catalytic pyrolysis of methylcyclohexane (MCH) was studied in a laboratory fixed fluidized bed reactor. The results indicated that higher reaction temperature and lower WHSV tended to produce more ethylene and propylene, among which the reaction temperature was an important factor influencing the ethylene formation. Compared with the FAU and BEA type zeolites, the MFI structured zeolite catalyst, thanks to more acid sites and smaller pore diameter of the catalyst, was conducive to the formation of ethylene and propylene. The protonation occurred on different C—C bonds and C—H bonds in the carbon chain of MCH led to different product slates, and the protonation on C—C bonds located at naphthenic ring was favorable to the formation of ethylene and propylene.
基金supported by the National Natural Science Foundation of China(Nos.21676225 and 21776236)Natural Science Foundation of Hunan Province(2018JJ2384)+2 种基金Fund of Hunan Provincial Education Department(19A478)Collaborative Innovation Centre of New Chemical Technologies for Environmental Benignity and Efficient Resource UtilizationEngineering Research Centre of Chemical Process Simulation and Optimization of Ministry of Education。
文摘To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects of iridium content,reduction temperature on the activity and stability of the catalysts were studied in detail.In the presence of Ir,metal particle size was decrea sed and electron transfer between Ir and Pt was observed.High reduction temperature increased the metallic Ir content but enlarged the particle size of active site s.During the dehydrogenation reaction on Pt-Ir bimetallic catalyst,MCH was efficiently converted into toluene and PtIr-5/Mg-Al-275 exhibited the highe st activity.After prolonging the residence time and raising the reaction temperature to 350℃the conversion and hydrogen evolution rate were increased to 99.9%and 578.7 mmol·(g Pt)^-1·min^-1,respectively.Moreover,no carbon deposition was observed in the spent catalyst,presenting a high anti-coking ability and good potential for industrial application.
基金financial support from the National Natural Science Foundation of China(21433001,21406251 and 21403265)Science and Technology Development Projects of SINOPEC,China(No.113138,112008 and 110099)The Young Taishan Scholars Program of Shandong Province(tsqn20161052)
文摘In this work, nickel metal supported on different supports(SiO_2, Al_2O_3, ZSM-5) were prepared by spraying nickel nitrate on the supports and calcined at 873 K. Then, they were characterized by XRD, XRF, N_2 adsorption–desorption, NH_3-TPD, MCH-TPD, H_2-TPR, and pyridine-FTIR,and tested as catalysts for the dehydrogenation aromatization and isomerization of methylcyclohexane(MCH) under the conditions of S-Zorb catalytic adsorption desulfurization(T ? 673 K, P ? 1.5 MPa, WHSV ? 5 h^(-1)). The H2-TPR results showed that the interaction of NiO with support decreased in the order of NiO/ZSM-5-Fe < NiO/ZSM-5 < NiO/Al_2O_3< NiO/SiO2. The decrease of the interaction appeared to facilitate the reduction of Ni and therefore to promote the dehydrogenation aromatization of MCH.It was found that a direct correlation existed between the gasoline components yields, cracking activity and the total number of different supports acid sites measured by NH_3-TPD tests. Higher total acidity of ZSM-5 resulted in gasoline loss because of higher cracking activity of MCH. The number of total acid sites of NiO/ZSM-5-Fe decreased and the medium strong Br€onsted acid sites necessary for MCH isomerization increased after the modification of ZSM-5 by iron metal. So, NiO/ZSM-5-Fe exhibited enhanced MCH conversion, aromatic and isomerization yields when compared to NiO/ZSM-5 and other Ni-based catalysts. This study shows that NiO/ZSM-5-Fe catalyst may be possible to be integrated into the S-Zorb system achieving the recovery of the octane number of gasoline.
基金supported by the National Natural Science Foundation of China(No.91544105,No.41275127,No.U1532137 and No.11575178)。
文摘Vacuum ultraviolet(VUV)photoionization and photodissociation of methylcyclohexane have been studied utilizing a reflectron time-of-flight mass spectrometer(RTOF-MS)with synchrotron radiation source.Photoionization efficiency curves(PIEs)of molecule ion C7H14^+ and fragment ions C7H13^+,C6H11^+,C6H10+,C5H10^+,C5H9^+,C4H8^+,C4H7^+,and C3H5^+ were observed.The ionization energy of methylcyclohexane was measured to be(9.80±0.03)eV,and appearance energies of fragment ions were determined from the PIEs.Optimized structures of transitional states,intermediates and product ions were characterized at the B3LYP/6-31G(d)level and the energies were calculated using G3B3 method.Formation channels of dominating fragment ions were proposed.Intramolecular hydrogen migrations and carbon ring-opening were the foremost processes in fragmentation pathways of methylcyclohexane.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.21978192)the SINOPEC Technology Project(No.117009-1)the Shanxi Province Key Innovative Research Team in Science and Technology(No.2014131006).
文摘The catalytic transformation of methylcyclohexane as an accepted probe reaction to evaluate zeolitic acidity(concentration,strength,and accessibility)is employed to study the acidity and the reactivity of three commercial dealuminated Y zeolites(DAY)with different Si/Al ratios and meso/microporosities,with their properties analyzed by N_(2) adsorption/desorption,pyridine-IR,and hydroxyl-IR spectroscopy technologies.The global activity(conversion)is largely dependent on the concentration of the acid sites,and the activity of the protonic sites in terms of turnover frequency(TOF)reflects the accessibility of acid sites.The products of aromatics and isomers,and the yield of cracking products increase with the increase of concentration of strong protonic sites in zeolite micropores.Moreover,the decrease of aromatics with the reduction of the concentration of acid sites and the diffusion length within DAY zeolites are observed due to the decrease of the secondary reaction.For the same reason,it results in the increasing of C_(7)products and alkenes/alkanes ratios in the cracking products.The high i-C_(4)product selectivity is a unique reflection of the high percentage of very strong acid sites,which is characterized by the hydroxyl-IR band at 3600 cm^(-1).
基金the National Natural Science Foundation of China(Nos.22225807,21961132026,21878331,22021004,and 22109177)the National Key Research and Development Program(Nos.2020YFA0210903 and 2021YFA1501304)+4 种基金the PetroChina research institute of petroleum processing program(Nos.PRIKY21057 and PRIKY 21199)the Fundamental Research Funds for the Central Universities(No.2462020BJRC008)the support of Energy Internet Research Center,China University of Petroleum(Beijing),Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202105)the Beijing Synchrotron Radiation Facility(BSRF)Shanghai Synchrotron Radiation Facility(SSRF)during the XAFS measurements at the beamline of 1W1B,1W2B,and BL11B.
文摘Methylcyclohexane(MCH)serves as an ideal hydrogen carrier in hydrogen storage and transportation process.In the continuous production of hydrogen from MCH dehydrogenation,the rational design of energy-efficient catalytic way with good performance remains an enormous challenge.Herein,an internal electric heating(IEH)assisted mode was designed and proposed by the directly electrical-driven catalyst using the resistive heating effect.The Pt/Al2O_(3)on Fe foam(Pt/Al2O_(3)/FF)with unique threedimensional network structure was constructed.The catalysts were studied in a comprehensive way including X-ray diffraction(XRD),scanning electron microscopy(SEM)-mapping,in situ extended X-ray absorption fine structure(EXAFS),and in situ COFourier transform infrared(FTIR)measurements.It was found that the hydrogen evolution rate in IEH mode can reach up to above 2060 mmol·gPt^(−1)·min^(−1),which is 2–5 times higher than that of reported Pt based catalysts under similar reaction conditions in conventional heating(CH)mode.In combination with measurements from high-resolution infrared thermometer,the equations of heat transfer rate,and reaction heat analysis results,the Pt/Al2O_(3)/FF not only has high mass and heat transfer ability to promote catalytic performance,but also behaves as the heating component with a low thermal resistance and heat capacity offering a fast temperature response in IEH mode.In addition,the chemical adsorption and activation of MCH molecules can be efficiently facilitated by IEH mode,proved by the operando MCH-FTIR results.Therefore,the as-developed IEH mode can efficiently reduce the heat and mass transfer limitations and prominently boost the dehydrogenation performance,which has a broad application potential in hydrogen storage and other catalytic reaction processes.
文摘Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcyclohexane(MCH)dehydrogenation.The results demonstrated that the addition of Fe to Pt/Al_(2)O_(3) enhanced the electron density of Pt and improved catalytic activity,while exhibiting negligible influence on the catalytic selectivity for toluene.When the Fe content was 0.057%,the catalyst exhibited the highest MCH consumption rate,which was approximately two times higher than that of the catalyst without Fe.Additionally,the incorporation of Fe inhibited the formation of coke and reduced the quantity of coke deposits on the catalyst,thereby improving its catalytic durability.Overall,Fe shows promise as a prospective secondary element for Pt/Al_(2)O_(3) to enhance the MCH dehydrogenation performance.
文摘Expanding the hydrogen energy utilization is essential for decarbonization,and the commercialization of hydrogen energy carrier systems that can“store”and“transport”hydrogen in a large scale is necessary.The organic chemical hydride method incorporates hydrogen atoms into the molecular structure of a LOHC(Liquid Organic Hydrogen Carrier)to store and transport hydrogen in a liquid state under normal temperature and pressure,and is a highly safe method with low business risk.Chiyoda has been developing the technology since 2002,completed a pilot demonstration in 2014 and named it the SPERA Hydrogen^(TM) System,and successfully completed an international supply chain demonstration that transports hydrogen from Brunei to Japan in a large scale in 2020,moving to the commercialization stage.Currently,Chiyoda is conducting feasibility studies with a number of domestic and foreign companies with the aim of commercializing the system as soon as possible.In this paper,outline,features,development status and our efforts in commercialization of SPERA HydrogenTM System are introduced.
文摘The current basic energy plan of Japan was authorized in the Cabinet in June 2010, in which ambitious energy and environmental targets and policies giving nuclear power a pivotal role toward 2030 were described. At present, the Japanese government has been forced to review the basic energy plan in the wake of the great east Japan earthquake occurred on March 11, 2011 followed by the severe accident at the nuclear power plants in Fukushima. Before the disaster, the IAE (institute of applied energy) had realized that it was not clear how CO2-free hydrogen would contribute to solving various energy and environmental issues, or that prospects were not clear for large demand of CQ-free hydrogen other than FCVs (fuel cell vehicles). In this connection, the authors organized a voluntary "Concept Study Group (in short)" in March 2011 and held four meetings until the end of March 2012. Through the quantitative studies using IAE's simulation model (GRAPE), the common recognition was built in the concept study group that hydrogen could contribute to energy security and increase in zero-emissions electric power ratio in Japan. It was also estimated that global CO2-free hydrogen supply chains could be realized by degrees after 2020. Based on these results, the authors made a proposal that hydrogen should be added in the primary energy constitution for new basic energy plan to the Japanese government because imported hydrogen could be considered as a pseudo-primary energy like LNG (liquefied natural gas). Now, the succeeding "Action Plan Study Group (in short)" has been held focusing on hydrogen demand in various applications, future pictures of CO2-free hydrogen chains and road maps. Activity results of the "Concept Study Group" are shown here.