The shooting method and the difference method are used for numerical simulation of CO2 absorption with aqueous solution of methyldiethanolamine (MDEA). It is demonstrated that these methods are available for the stead...The shooting method and the difference method are used for numerical simulation of CO2 absorption with aqueous solution of methyldiethanolamine (MDEA). It is demonstrated that these methods are available for the steady-state model, which may be expressed as a set of differential algebraic equations (DAEs) with two-point boundary values. This method makes it possible not only to obtain the concentration profiles for MDEA system, but also to reveal the effect of CO2 interfacial concentration on the enhancement factor. With this numerical simulation, the mass transfer process with multicomponent diffusion and reactions can be better understood.展开更多
文摘The shooting method and the difference method are used for numerical simulation of CO2 absorption with aqueous solution of methyldiethanolamine (MDEA). It is demonstrated that these methods are available for the steady-state model, which may be expressed as a set of differential algebraic equations (DAEs) with two-point boundary values. This method makes it possible not only to obtain the concentration profiles for MDEA system, but also to reveal the effect of CO2 interfacial concentration on the enhancement factor. With this numerical simulation, the mass transfer process with multicomponent diffusion and reactions can be better understood.