A novel composites hydrogel adsorbent was facilely synthesized for efficient removal of acid dyes from aqueous solution.The composite hydrogel consisting of TiO_2 nanotubes(TN) and graphene oxide(GO)(H-TN-GO) was char...A novel composites hydrogel adsorbent was facilely synthesized for efficient removal of acid dyes from aqueous solution.The composite hydrogel consisting of TiO_2 nanotubes(TN) and graphene oxide(GO)(H-TN-GO) was characterized by BrunauerEmmett-Teller(BET),transmission electron microscope(TEM),scanning electron microscope(SEM),Raman spectra and X-ray photoelectron spectroscope(XPS).Experimental results elucidated that columnar hydrogel could be tunably prepared with self-assembly by adjusting the proportion of GO/TN,mixing time and pH.The properties of adsorption and regeneration on methyl orange(MO)onto H-TN-GO were investigated respectively.The maximal adsorption capacity of H-TN-GO for MO reached 933.8 and 513.7mg/g under the pH of 4.0 and 6.8,respectively.The adsorption capacity of MO reached the maximum when pH was equivalent to4.0,which attributed to increasing electrostatic attraction.Besides,the adsorption behavior was fitted reasonably better with Freundlich isotherm model than Langmuir model;the adsorption speed was rapid and the removal ratio almost reached 99.5% when the concentration of MO was less than 100 mg/L.After the used adsorbent was irradiated with the ultraviolet ray of 500 W for 3 h,its adsorption capacity could be recovered without significant loss.展开更多
Y2 Mo4 O15 particles were prepared using a simple solution method(SSM) and used as a highly efficient selective adsorbent for methylene blue(MB) in aqueous solutions. The maximum adsorption capacity of the samples...Y2 Mo4 O15 particles were prepared using a simple solution method(SSM) and used as a highly efficient selective adsorbent for methylene blue(MB) in aqueous solutions. The maximum adsorption capacity of the samples was determined based on the adsorption isotherms with different adsorbent doses at 298,318 and 338 K. The fittings of the temperature-dependent isotherms yield ΔrGm^θ=-34.1 kJ/mol,ΔrHm^θ-36.9 kJ/mol and ΔrSm^θ=-9.67 J/mol·K. The as-prepared Y2 Mo4 O15 has a very large maximum adsorption capacity(i.e., 198 mg/g) for MB at room temperature, and this value is only less than that of amorphous hardwood powder. Notably, 80 mg of adsorbent is able to completely decolorize 250 mL of 30 mg/L MB aqueous solution. The kinetic parameters of the adsorption process were obtained from the temperature-dependent adsorption isotherm(i.e., E1=26.9 kJ/mol and E1 = 63.8 kJ/mol). The results of adsorption kinetics show that it is a pseudo-second-order reaction. The mechanism of the high selectivity and the large adsorption capacity is discussed based on competitive ion(CI) experiments and coordination theory.展开更多
The effective disposal of redundant tea waste is crucial to environmental protection and comprehensive utilization of trash resources. In this work, the removal of methyl orange (MO) from aqueous solution using spen...The effective disposal of redundant tea waste is crucial to environmental protection and comprehensive utilization of trash resources. In this work, the removal of methyl orange (MO) from aqueous solution using spent tea leaves as the sorbent was investigated in a batch experiment. First, the effects of various parameters such as temperature, adsorption time, dose of spent tea leaves, and initial concentration of MO were investigated. Then, the response surface methodology (RSM), based on Box- Behnken design, was employed to obtain the optimum adsorption conditions. The optimal conditions could be obtained at an initial concentration of MO of 9.75 mg·L-1, temperature of 35.3℃, contact time of 63.8 min, and an adsorbent dosage 3.90 g· L-1. Under the optimized condi- tions, the maximal removal of MO was 58.2%. The results indicate that spent tea leaves could be used as an effective and economical adsorbent in the removal of MO from aqueous solution.展开更多
A novel photocatalyst, bismuth oxychloride (BiOC1) micro-nano particles with a fine ferrite plate structure, was prepared by a low-cost, simple hydrolytic method. The as-prepared BLOC1 was characterized by scanning ...A novel photocatalyst, bismuth oxychloride (BiOC1) micro-nano particles with a fine ferrite plate structure, was prepared by a low-cost, simple hydrolytic method. The as-prepared BLOC1 was characterized by scanning electron microscopy (SEM), thermogravimetric analysis-differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectra (DRS). The effects of preparation conditions such as sodium dodecyl benzene sulfonate (SDBS) dispersant, HC1 concentration, and heat treatment temperature on BiOC1 performances were investigated. Moreover, its photocatalytic activity was evaluated on the degradation of methylene orange (MO) and was compared with that of TiO2 (P25). The experimental results confirmed that BiOC1 micro-nano particles prepared with SDBS, the HC1 concentration of 1.5 mol/L, and the heat treatment temperature of 80℃ exhibited the best performance for the photodegradation of MO solution, and they showed good stability and better photocatalytic activity than P25 photocatalyst.展开更多
基金National Natural Science Foundation of China(No.51522805)
文摘A novel composites hydrogel adsorbent was facilely synthesized for efficient removal of acid dyes from aqueous solution.The composite hydrogel consisting of TiO_2 nanotubes(TN) and graphene oxide(GO)(H-TN-GO) was characterized by BrunauerEmmett-Teller(BET),transmission electron microscope(TEM),scanning electron microscope(SEM),Raman spectra and X-ray photoelectron spectroscope(XPS).Experimental results elucidated that columnar hydrogel could be tunably prepared with self-assembly by adjusting the proportion of GO/TN,mixing time and pH.The properties of adsorption and regeneration on methyl orange(MO)onto H-TN-GO were investigated respectively.The maximal adsorption capacity of H-TN-GO for MO reached 933.8 and 513.7mg/g under the pH of 4.0 and 6.8,respectively.The adsorption capacity of MO reached the maximum when pH was equivalent to4.0,which attributed to increasing electrostatic attraction.Besides,the adsorption behavior was fitted reasonably better with Freundlich isotherm model than Langmuir model;the adsorption speed was rapid and the removal ratio almost reached 99.5% when the concentration of MO was less than 100 mg/L.After the used adsorbent was irradiated with the ultraviolet ray of 500 W for 3 h,its adsorption capacity could be recovered without significant loss.
基金Project supported by the Fundamental Research Funds for the Central Universities(N162302001)the Basic Key Program of Applied Basic Research of Science and Technology Commission Foundation of Hebei Province in China(15961005D)+2 种基金the Natural Science Foundation of Liaoning Province(2015020665)the Hebei Province Higher Education Research Project(ZD2017309)Northeastern University at Qinhuangdao Campus Research Fund(XNK201602)
文摘Y2 Mo4 O15 particles were prepared using a simple solution method(SSM) and used as a highly efficient selective adsorbent for methylene blue(MB) in aqueous solutions. The maximum adsorption capacity of the samples was determined based on the adsorption isotherms with different adsorbent doses at 298,318 and 338 K. The fittings of the temperature-dependent isotherms yield ΔrGm^θ=-34.1 kJ/mol,ΔrHm^θ-36.9 kJ/mol and ΔrSm^θ=-9.67 J/mol·K. The as-prepared Y2 Mo4 O15 has a very large maximum adsorption capacity(i.e., 198 mg/g) for MB at room temperature, and this value is only less than that of amorphous hardwood powder. Notably, 80 mg of adsorbent is able to completely decolorize 250 mL of 30 mg/L MB aqueous solution. The kinetic parameters of the adsorption process were obtained from the temperature-dependent adsorption isotherm(i.e., E1=26.9 kJ/mol and E1 = 63.8 kJ/mol). The results of adsorption kinetics show that it is a pseudo-second-order reaction. The mechanism of the high selectivity and the large adsorption capacity is discussed based on competitive ion(CI) experiments and coordination theory.
文摘The effective disposal of redundant tea waste is crucial to environmental protection and comprehensive utilization of trash resources. In this work, the removal of methyl orange (MO) from aqueous solution using spent tea leaves as the sorbent was investigated in a batch experiment. First, the effects of various parameters such as temperature, adsorption time, dose of spent tea leaves, and initial concentration of MO were investigated. Then, the response surface methodology (RSM), based on Box- Behnken design, was employed to obtain the optimum adsorption conditions. The optimal conditions could be obtained at an initial concentration of MO of 9.75 mg·L-1, temperature of 35.3℃, contact time of 63.8 min, and an adsorbent dosage 3.90 g· L-1. Under the optimized condi- tions, the maximal removal of MO was 58.2%. The results indicate that spent tea leaves could be used as an effective and economical adsorbent in the removal of MO from aqueous solution.
基金supported by the National Natural Science Foundation of China (No.20876104 and No.21176168)the Science and Technology Foundation of Shanxi Province,China (No.20090311082)
文摘A novel photocatalyst, bismuth oxychloride (BiOC1) micro-nano particles with a fine ferrite plate structure, was prepared by a low-cost, simple hydrolytic method. The as-prepared BLOC1 was characterized by scanning electron microscopy (SEM), thermogravimetric analysis-differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectra (DRS). The effects of preparation conditions such as sodium dodecyl benzene sulfonate (SDBS) dispersant, HC1 concentration, and heat treatment temperature on BiOC1 performances were investigated. Moreover, its photocatalytic activity was evaluated on the degradation of methylene orange (MO) and was compared with that of TiO2 (P25). The experimental results confirmed that BiOC1 micro-nano particles prepared with SDBS, the HC1 concentration of 1.5 mol/L, and the heat treatment temperature of 80℃ exhibited the best performance for the photodegradation of MO solution, and they showed good stability and better photocatalytic activity than P25 photocatalyst.