Shanghai Electrical Machinery Manufacturing Works (abbr, SEMMW), a comprehensive electrical machinery manufacturing works with a modern production scale, is the first rank large stateowned works, which is one of the 5...Shanghai Electrical Machinery Manufacturing Works (abbr, SEMMW), a comprehensive electrical machinery manufacturing works with a modern production scale, is the first rank large stateowned works, which is one of the 500 largest industrial enterprises in China and in the first place of China’s power station equipment manufacturing industry. It is a hightechnology enterprise of Shanghai,展开更多
1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successful...1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successfully created in China and was known afterwards as a turbine generator with watercooled stator and rotor windings (Abbrev, TGWSR). The teachers from Zhejiang University came to Shanghai between展开更多
When a vehicle travels in urban areas, onboard global positioning system (GPS) signals may be obstructed by high-rise buildings and thereby cannot provide accurate positions. It is proposed to perform localization b...When a vehicle travels in urban areas, onboard global positioning system (GPS) signals may be obstructed by high-rise buildings and thereby cannot provide accurate positions. It is proposed to perform localization by registering ground images to a 2D building boundary map which is generated from aerial images. Multilayer feature graphs (MFG) is employed to model building facades from the ground images. MFG was reported in the previous work to facilitate the robot scene understand- ing in urhan areas. By constructing MFG, the 2D/3D positions of features can be obtained, inclu- cling line segments, ideal lines, and all primary vertical planes. Finally, a voting-based feature weighted localization method is developed based on MFGs and the 2D building boundary map. The proposed method has been implemented and validated in physical experiments. In the proposed ex- periments, the algorithm has achieved an overall localization accuracy of 2.2m, which is better than commercial GPS working in open environments.展开更多
文摘Shanghai Electrical Machinery Manufacturing Works (abbr, SEMMW), a comprehensive electrical machinery manufacturing works with a modern production scale, is the first rank large stateowned works, which is one of the 500 largest industrial enterprises in China and in the first place of China’s power station equipment manufacturing industry. It is a hightechnology enterprise of Shanghai,
文摘1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successfully created in China and was known afterwards as a turbine generator with watercooled stator and rotor windings (Abbrev, TGWSR). The teachers from Zhejiang University came to Shanghai between
基金Supported by the National High Technology Research and Development Program of China(No.2012AA041403)National Natural Science Foundation of China(No.60905061,61305107)+1 种基金the Fundamental Research Funds for the Central Universities(No.ZXH2012N003)the Scientific Research Funds for Civil Aviation University of China(No.2012QD23x)
文摘When a vehicle travels in urban areas, onboard global positioning system (GPS) signals may be obstructed by high-rise buildings and thereby cannot provide accurate positions. It is proposed to perform localization by registering ground images to a 2D building boundary map which is generated from aerial images. Multilayer feature graphs (MFG) is employed to model building facades from the ground images. MFG was reported in the previous work to facilitate the robot scene understand- ing in urhan areas. By constructing MFG, the 2D/3D positions of features can be obtained, inclu- cling line segments, ideal lines, and all primary vertical planes. Finally, a voting-based feature weighted localization method is developed based on MFGs and the 2D building boundary map. The proposed method has been implemented and validated in physical experiments. In the proposed ex- periments, the algorithm has achieved an overall localization accuracy of 2.2m, which is better than commercial GPS working in open environments.