The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer...The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer processes and models,which are helpful to better control the extraction process of oils and proteins.In this paper,mass transfer process of peanut protein extracted by bis(2-ethylhexyl)sodium sulfosuccinate(AOT)/isooctane reverse micelles was investigated.The effects of stirring speed(0,70,140,and 210 r/min),temperature of extraction(30,35,40,45,and 50℃),peanut flour particle size(0.355,0.450,0.600,and 0.900 mm)and solidliquid ratio(0.010,0.0125,0.015,0.0175,and 0.020 g/mL)on extraction rate were examined.The results showed that extraction rate increased with temperature rising,particle size reduction as well as solid-liquid ratio increase respectively,while little effect of stirring speed(P>0.05)was observed.The apparent activation energy of extraction process was calculated as 10.02 kJ/mol and Arrhenius constant(A)was 1.91 by Arrhenius equation.There was a linear relationship between reaction rate constant and the square of the inverse of initial particle radius(1/r_(0)^(2))(P<0.05).This phenomenon and this shrinking core model were anastomosed.In brief,the extraction process was controlled by the diffusion of protein from the virgin zone interface of particle through the reacted zone and it was in line with the first order reaction.Mass transfer kinetics of peanut protein extracted by reverse micelles was established and it was verified by experimental results.The results provide an important theoretical guidance for industrial production of peanut protein separation and purification.展开更多
Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone ...Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect.To improve the treatment efficacy,we developed Pluronic P123(P123)-based polymeric micelles dually decorated with alendronate(ALN)and cancer-specific phage protein DMPGTVLP(DP-8)for targeted drug delivery to breast cancer bone metastases.Doxorubicin(DOX)was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity(3.44%).The DOX-loaded polymeric micelles were spherical,123 nm in diameter on average,and exhibited a narrow size distribution.The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release.The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells.Rapid binding of the micelles to hydroxyapatite(HA)microparticles indicated their high affinity for bone.P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model.In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity.In conclusion,our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.展开更多
Objective:Inhibition of tumor angiogenesis has become a new targeted tumor therapy.In this study,we established a micellar carrier with a tumor neovascularization-targeting effect modified by the neovascularization-ta...Objective:Inhibition of tumor angiogenesis has become a new targeted tumor therapy.In this study,we established a micellar carrier with a tumor neovascularization-targeting effect modified by the neovascularization-targeting peptide NGR.Methods:The targeted polymer poly(ethylene glycol)-b-poly(lactide-co-glycolide)(PEG-PLGA)modified with Asn–Gly–Arg(NGR)peptide was prepared and characterized by 1H nuclear magnetic resonance and Fourier-transform infrared spectrometry.NGR-PEG-PLGA was used to construct curcumin(Cur)-loaded micelles by the solvent evaporation method.The physicochemical properties of the micelles were also investigated.Additionally,we evaluated the antitumor efficacy of the polymer micelles(PM)using in vitro cytology experiments and in vivo animal studies.Results:The particle size of Cur-NGR-PM was 139.70±2.51 nm,and the drug-loading capacity was 14.37±0.06%.In vitro cytological evaluation showed that NGR-modified micelles showed higher cellular uptake through receptor-mediated endocytosis pathways than did unmodified micelles,leading to the apoptosis of tumor cells.Then,in vivo antitumor experiments showed that the modified micelles significantly inhibited tumor growth and were safe.Conclusions:NGR-modified micelles significantly optimized the therapeutic efficacy of Cur.This strategy offers a viable avenue for cancer treatment.展开更多
The appearance of multidrug-resistant bacteria and the formation of bacterial biofilms have necessitated the development of alternative antimicrobial therapeutics.Antibiotics conjugated with or embedded in nano-drug c...The appearance of multidrug-resistant bacteria and the formation of bacterial biofilms have necessitated the development of alternative antimicrobial therapeutics.Antibiotics conjugated with or embedded in nano-drug carriers show a great potential and advantage over free drugs,but the mass proportion of carriers generally exceeds 90%of the nano-drug,resulting in low drug loading and limited therapeutic output.Herein,we fabricated a nanocarrier using antibiotics as the building blocks,minimizing the use of carriermaterials,significantly increasing the drug loading content and treatment effect.Firstly,we conjugated betaine carboxylate with ciprofloxacin(CIP)through an ester bond to form the amphiphilic conjugate(CIP-CB),which self-assembled into micelles(CIP-CBMs)in aqueous solutions,with a CIP loading content as high as 65.4%and pH-induced surface charge reversal properties.Secondly,a model photosensitizer(5,10,15,20-tetraphenylporphyrin(TPP))was encapsulated in CIP-CBMs,generating infection-targeted photodynamic/antibiotic combined nanomedicines(denoted as TPP@CIP-CBMs).Upon accumulation at infection sites or in deep bacterial biofilms,the ester bond between the betaine carboxylate and CIP is cleaved to release free TPP and CIP,leading to a synergetic antibacterial and antibiofilm activity in vitro and in vivo.展开更多
Objective:Resveratrol polymer micelles with tissue adhesion were prepared and the content of resveratrol in the micelles was determined by HPLC.Method:The micelle adhesion experiment was carried out by polylysine orif...Objective:Resveratrol polymer micelles with tissue adhesion were prepared and the content of resveratrol in the micelles was determined by HPLC.Method:The micelle adhesion experiment was carried out by polylysine orifice plate experiment and small animal fluorescence imaging method,and the micelle prescription was optimized to obtain resveratrol micelles with good adhesion.The separation was performed on a Shiseido SPOLAR C18 column(150 mm×4.6 mm,5μm)with methanol-water(42:58)as the mobile phase.The flow rate was 1.0 mL·min^(-1),the detection wavelength was 305 nm,the column temperature was 35℃,and the injection volume was 10μL.Results:Resveratrol micelles prepared with F127 alone had the best adhesion.The peak area and concentration of resveratrol had a good linear relationship in the concentration range of 10~200μg/mL(r=0.9996).The specificity,precision,recovery and stability all met the methodological requirements.Conclusion:In this experiment,resveratrol micelles with tissue adhesion were successfully prepared,and a method for the determination of resveratrol content in micelles was established.The method is accurate,rapid and simple.展开更多
To achieve targeted thrombolysis, a targeted delivery system of lumbrokinase(LK) was constructed using RGDfk-conjugated hybrid micelles. Based on the specific affinity of RGDfk to glycoprotein complex of GP Ⅱ b/Ⅲ a ...To achieve targeted thrombolysis, a targeted delivery system of lumbrokinase(LK) was constructed using RGDfk-conjugated hybrid micelles. Based on the specific affinity of RGDfk to glycoprotein complex of GP Ⅱ b/Ⅲ a expressed on the surface of membrane of activated platelet, LK loaded targeted micelles(LKTM) can be delivered to thrombus. The hybrid micelles were composed of polycaprolactone-block-poly(2-(dimethylamino) ethyl methacrylate)(PCL-PDMAEMA), methoxy polyethylene glycol-block-polycaprolactone(mPEG-PCL)and RGDfk conjugated polycaprolactone-block-polyethylene glycol(PCL-PEG-RGDfk). PCLPDMAEMA was synthesized via ring open polymerization(ROP) and atom transfer radical polymerization(ATRP). PCL-PEG-RGDfk was synthesized via ROP and carbodiimide chemistry. The prepared LKTM was characterized by dynamic light scattering(DLS) and transmission electron microscope(TEM). Colloidal stability assay showed the prepared LKTM was stable. Biocompatibility assay was performed to determine the safe concentration range of polymer. The assay of fluorescent distribution in vivo demonstrated that LKTM can be efficiently delivered to thrombi in vivo. Thrombolysis in vivo indicated the thrombolytic potency of LKTM was optimal in all groups. Notably, the laboratory mice treated with LKTM exhibited a significantly shorter tail bleeding time compared to those treated with LK or LK-loaded micelles without RGDfk, which suggested that the targeted delivery of LK using RGDfk-conjugated hybrid micelles effectively reduced the bleeding risk.展开更多
Aqueous solution of anionic surfactant,sodium oleate(NaOA),was studied by means of steady-state shear rheology and dynamic oscillatory technique.The system of NaOA/Na3PO4 showed high viscosity,strong viscoelasticity...Aqueous solution of anionic surfactant,sodium oleate(NaOA),was studied by means of steady-state shear rheology and dynamic oscillatory technique.The system of NaOA/Na3PO4 showed high viscosity,strong viscoelasticity and good ability of countering Ca^2+,Mg^2+.The Maxwell model and Cole-Cole plot were applied to study the dynamic viscoelasticity of wormlike micelles.The microstructures of the wormlike micelles were characterized by FF-TEM.展开更多
In this study, a p H-sensitive micelle self-assembled from poly(L-histidine) based triblock copolymers of poly(ethylene glycol)–poly(D,L-lactide)–poly(L-histidine)(mPEG-PLA-PHis) was prepared and used as the intrace...In this study, a p H-sensitive micelle self-assembled from poly(L-histidine) based triblock copolymers of poly(ethylene glycol)–poly(D,L-lactide)–poly(L-histidine)(mPEG-PLA-PHis) was prepared and used as the intracellular doxorubicin(Dox) delivery for cancer chemotherapy. Dox was loaded into the micelles by thin-film hydration method and a Box–Behnken design for three factors at three levels was used to optimize the preparations. The optimized mPEG-PLA-Phis/Dox micelles exhibited good encapsulation efficiency of 91.12%,a mean diameter of 45 nm and narrow size distribution with polydispersity index of 0.256.In vitro drug release studies demonstrated that Dox was released from the micelles in a p Hdependent manner. Furthermore, the cellular evaluation of Dox loaded micelles displayed that the micelles possessed high antitumor activity in vitro with an IC50 of 35.30 μg/ml against MCF-7/ADR cells. The confocal microscopy and flow cytometry experiments indicated that m PEG-PLA-Phis micelles mediated efficient cytoplasmic delivery of Dox with the aid of poly(Lhistidine) mediated endosomal escape. In addition, blank m PEG-PLA-Phis micelles were shown to be nontoxic to MCF-7/ADR cells even at a high concentration of 200 μg/ml. The pHsensitive mPEG-PLA-PHis micelles have been demonstrated to be a promising nanosystem for the intracellular delivery of Dox for MDR reversal.展开更多
Most of the conventional chemotherapeutic agents used for cancer chemotherapy suffer from multidrug resistance of tumor cells and poor antitumor efficacy.Based on physiological differences between the normal tissue an...Most of the conventional chemotherapeutic agents used for cancer chemotherapy suffer from multidrug resistance of tumor cells and poor antitumor efficacy.Based on physiological differences between the normal tissue and the tumor tissue,one effective approach to improve the efficacy of cancer chemotherapy is to develop pH-sensitive polymeric micellar delivery systems.The copolymers with reversible protonationedeprotonation core units or acid-liable bonds between the therapeutic agents and the micelle-forming copolymers can be used to form pH-sensitive polymeric micelles for extracellular and intracellular drug smart release.These systems can be triggered to release drug in response to the slightly acidic extracellular fluids of tumor tissue after accumulation in tumor tissues via the enhanced permeability and retention effect,or they can be triggered to release drug in endosomes or lysosomes by pH-controlled micelle hydrolysis or dissociation after uptake by cells via the endocytic pathway.The pH-sensitive micelles have been proved the specific tumor cell targeting,enhanced cellular internalization,rapid drug release,and multidrug resistance reversal.The multifunctional polymeric micelles combining extracellular pH-sensitivity with receptor-mediated active targeting strategies are of great interest for enhanced tumor targeting.The micelles with receptor-mediated and intracellular pH targeting functions are internalized via receptor-mediated endocytosis followed by endosomal-pH triggered drug release inside the cells,which reverses multidrug resistance.The pH sensitivity strategy of the polymeric micelles facilitates the specific drug delivery with reduced systemic side effects and improved chemotherapeutical efficacy,and is a novel promising platform for tumor-targeting drug delivery.展开更多
Enhanced permeation and retention(EPR) targeting effect of rhodamine B labeled PEG-b-P(LA-co-DHP) [PEG:poly(ethylene glycol);LA:L-lactide;DHP:2,2-dihydroxylmethyl-propylene carbonate] micelles(RhB-micelles)...Enhanced permeation and retention(EPR) targeting effect of rhodamine B labeled PEG-b-P(LA-co-DHP) [PEG:poly(ethylene glycol);LA:L-lactide;DHP:2,2-dihydroxylmethyl-propylene carbonate] micelles(RhB-micelles) was observed in H22 liver cancer bearing mice.The RhB-micelles were prepared by conjugating rhodamine B with the DHP units of amphiphilic block copolymer PEG-b-P(LA-co-DHP) followed by subsequent self-assembling of the conjugate.The parent copolymer PEG-b-P(LA-co-DHP) was synthesized by ring-opening copolymerization of LA and DHP with PEG as macroinitiator and diethyl zinc(ZnEt2) as catalyst.The micelles have a spherical shape and the average diameter is ca.50 nm by TEM(transmission electron microscope) or 80 nm by DLS(dynamic light scattering).Their in vitro cell uptake experiment by CLSM(confocal laser scanning microscopy) and flow cytometry showed preferential internalization of micelles by MCF-7 human breast cancer cells to free RhB.The in vivo tests by live animal imaging and ex vivo excised organ imaging showed that after vena tail injection,free RhB molecules were distributed in the whole body through the circulation system and then gradually metabolized and excreted and there was no preferential partition in tumor bed from the beginning to the end.But the RhB-micelles were preferentially distributed to the tumor bed so that their concentration(fluorescent intensity) in tumor bed got the level of the liver at a certain time point between 1 and 6 h and reached a maximum relative intensity at around 12 h,indicating an obvious EPR effect of RhB-micelles in H22 liver cancer.展开更多
This study primarily focused on the systematic assessment of both in vitro and in vivo anti-tumor effects of docetaxel-loaded polyethylene glycol(PEG)2000-polycaprolactone(PCL)2600 micelles on hormone-refractory p...This study primarily focused on the systematic assessment of both in vitro and in vivo anti-tumor effects of docetaxel-loaded polyethylene glycol(PEG)2000-polycaprolactone(PCL)2600 micelles on hormone-refractory prostate cancer(HRPC). By using solvent evaporation method, PEG-PCL was chosen to prepare doxetaxel(DTX)-loaded mPEG-PCL micelles(DTX-PMs), with the purpose of eliminating side effects of the commercial formulation(Tween 80) and prolonging the blood circulation time. The prepared DTX-PMs had an average particle size of 25.19±2.36 nm, a zeta potential of 0.64±0.15 mV, a polydispersity index of 0.56±0.03, a drug loading of(8.72±1.05)%, and an encapsulation efficiency of(98.1±8.4)%. In vitro cytotoxicity studies indicated that DTX-PMs could effectively kill LNCap-C4-2B cells and show a dose- and time-dependent efficacy. The hemolysis test showed that DTX-PMs had less hemocytolysis than the commercial product of Duopafei. A sustained in vitro release behavior and prolonged circulation time in blood vessels were observed in the DTX-PMs. Furthermore, when compared with Duopafei, the DTX-PMs dramatically reduced the prostate specific antigen(PSA) level and tumor growth of prostate tumor-bearing nude mice in vivo. In conclusion, the DTX-PMs can lower systemic side effects, improve anti-tumor activity with prolonged blood circulation time, and will bring an alternative to patients with HRPC.展开更多
The UV-Vis spectra of THPPH2 in CTAB micelles at pH7.2 and pH11.0 were analyzed to study the effect of micellar environments on the aggregation behaviors of this porphyrin.
Co-delivery of anti-cancer drugs is promising to improve the efficacy of cancer treatment.This study was aiming to investigate the potential of concurrent delivery of resveratrol(RES)and docetaxel(DTX)via polymeric na...Co-delivery of anti-cancer drugs is promising to improve the efficacy of cancer treatment.This study was aiming to investigate the potential of concurrent delivery of resveratrol(RES)and docetaxel(DTX)via polymeric nanocarriers to treat breast cancer.To this end,methoxyl poly(ethylene glycol)-poly(D,L-lactide)copolymer(mPEG-PDLA)was prepared and characterized using FTIR and 1H NMR,and their molecular weights were determined by GPC.Isobologram analysis and combination index calculation were performed to find the optimal ratio between RES and DTX to against human breast adenocarcinoma cell line(MCF-7 cells).Subsequently,RES and DTX were loaded in the mPEG-PDLA micelles simultaneously,and the morphology,particle size distribution,in vitro release,pharmacokinetic profiles,as well as cytotoxicity to the MCF-7 cells were characterized.IC50 of RES and DTX in MCF-7 cells were determined to be 23.0μg/ml and 10.4μg/ml,respectively,while a lower IC50 of 4.8μg/ml of the combination of RES and DTX was obtained.The combination of RES and DTX at a ratio of 1:1(w/w)generated stronger synergistic effect than other ratios in the MCF-7 cells.RES and DTX loaded mPEG-PDLA micelles exhibited prolonged release profiles,and enhanced cytotoxicity in vitro against MCF-7 cells.The AUC(0→t)of DTX and RES in mPEG-PDLA micelles after i.v.administration to rats were 3.0-fold and 1.6-fold higher than that of i.v.injections of the individual drugs.These findings indicated that the co-delivery of RES and DTX using mPEG-PDLA micelles could have better treatment of tumors.展开更多
Reverse micelles bring mild and effective microenvironments in organic solvent that contain bitmolecules, which have attracted immense attention for application in the isolation of proteins, protein refolding, and enz...Reverse micelles bring mild and effective microenvironments in organic solvent that contain bitmolecules, which have attracted immense attention for application in the isolation of proteins, protein refolding, and enzymatic reaction. In this review, the application of reverse micelles for protein separation and refolding has been briefly summarized and various reverse micellar systems composed of different surfactants, including ionic, non- ionic, mixed, and affinity-based reverse micelles, have been highlighted. It illustrates especially the potential application of the novel affinity-based reverse micelles consisting of biocompatible surfactant coupled with affinity ligands. Moreover, the importance to develop universal affinity-based reverse micelles for protein separation and refolding in the downstream processing of biotechnology has been pointed out.展开更多
The in situ gelling hybrid hydrogel system has been reported to effectively concentratechemotherapeutic drugs at the tumor site and sustain their release for a long period. DTX-micelles(docetaxel-loaded mixed micelles...The in situ gelling hybrid hydrogel system has been reported to effectively concentratechemotherapeutic drugs at the tumor site and sustain their release for a long period. DTX-micelles(docetaxel-loaded mixed micelles) are able to increase the solubility of DTX inwater, and then a high drug loading rate of hydrogels can be achieved by encapsulatingthe docetaxel-loaded mixed micelles into the hydrogels. The thermosensitive nature ofDTX-MM-hydrogels(thermosensitive hydrogels incorporated with docetaxel-loaded mixedmicelles) can accelerate the formation of a depot of this drug-loaded system at the siteof administration. Therefore, the hydrogels provide a much slower release compared withDTX-micelles and DTX-injection. An in vivo retention study has demonstrated that the DTX-MM-hydrogels can prolong the drug retention time and in viv o trials have shown that theDTX-MM-hydrogels have a higher antitumor efficacy and systemic safety. In conclusion, theDTX-MM-hydrogels prepared in this study have considerable potential as a drug deliverysystem, with higher tumor inhibition effects and are less toxic to normal tissues.展开更多
The extraction of cytochrome C was carried out by means of phase transfer technique with three different reverse micellar systems, i.e. , a CTAB micellar solution in n butyl alcohol chloroform(volume ratio 4...The extraction of cytochrome C was carried out by means of phase transfer technique with three different reverse micellar systems, i.e. , a CTAB micellar solution in n butyl alcohol chloroform(volume ratio 4∶1), an AOT micellar solution in isooctane and a SDSS D 2EHPA micellar solution in isooctane. The extraction mechanisms were studied. The results show that the extraction mechanisms for the same proteins with different types of reverse micellar systems can be distinct. The extraction of cytochrome C with CTAB and SDSS D 2EHPA reverse micellar systems are carried out according to the mechanism of electrostatic interaction. However, in the extraction of cytochrome C with the AOT reverse micellar system, the electrostatic interaction between the protein and the surfactant is not important.展开更多
Reported here is fabrication of optically active micelles with broad range of morphologies in water, such as spheres, cylinders, and vesicles, from self-assembly of poly(ethylene glycol) monomethyl ether-b-poly- (m...Reported here is fabrication of optically active micelles with broad range of morphologies in water, such as spheres, cylinders, and vesicles, from self-assembly of poly(ethylene glycol) monomethyl ether-b-poly- (methacryloyl-L-leucine methyl ester) (MPEG-b-PMALM) copolymer, which was prepared via atom transfer radical polymerization (ATRP) from vinyl monomer bearing chiral amino acid moieties, N-methacryloyl L-leucine methyl ester (MALM), using bromine (Br) end-capped poly(ethylene golycol) monomethylether (MPEG-Br) as macroinitiator in the presence of CuBr/Me6TREN as catalytic system.展开更多
To investigate the effect of supersaturation induced by micelle formation during dissolution on the bioavailability of itraconazole(ITZ)/Soluplus~? solid dispersion. Solid dispersions prepared by hot melt extrusion (H...To investigate the effect of supersaturation induced by micelle formation during dissolution on the bioavailability of itraconazole(ITZ)/Soluplus~? solid dispersion. Solid dispersions prepared by hot melt extrusion (HME) were compressed into tablets directly with other excipients. Dissolution behavior of ITZ tablets was studied by dissolution testing and the morphology of micelles in dissolution media was studied using transmission electron microscopy (TEM). Drug transferring from stomach into intestine was simulated to obtain a supersaturated drug solution. Bioavailability studies were performed on the ITZ tablets and Sporanox~? in beagle dogs. The morphology of micelles in the dissolution media was observed to be spherical in shape, with an average size smaller than 100 nm. The supersaturated solutions formed by Soluplus~? micelles were stable and no precipitation took place over a period of 180 min. Compared with Sporanox~?, ITZ tablets exhibited a 2.50-fold increase in the AUC (0–96) of ITZ and a 1.95-fold increase in its active metabolite hydroxyitraconazole (OHITZ) in the plasma of beagle dogs. The results obtained provided clear evidence that not only the increase in the dissolution rate in the stomach, but also the supersaturation produced by micelles in the small intestine may be of great assistance in the successful development of poorly water-soluble drugs. The micelles formed by Soluplus~? enwrapped the molecular ITZ inside the core which promoted the amount of free drug in the intestinal cavity and carried ITZ through the aqueous boundary layer(ABL), resulting in high absorption by passive transportation across biological membranes. The uptake of intact micelles through pinocytosis together with the inhibition of P-glycoprotein-mediated drug efflux in intestinal epithelia contributed to the absorption of ITZ in the gastrointestinal tract. These results indicate that HME with Soluplus~?, which can induce supersaturation by micelleformation, may be of great assistance to the successful development of poorly watersoluble drugs.展开更多
The enantiomers of chiral drugs often have different potencies, toxicities, and biochemical properties. Therefore, the FDA and other worldwide regulatory agencies require manufactures to test and prove the enantiomeri...The enantiomers of chiral drugs often have different potencies, toxicities, and biochemical properties. Therefore, the FDA and other worldwide regulatory agencies require manufactures to test and prove the enantiomeric purity of chiral drugs. Amino acid based molecular micelles (AABMM) have been used in chiral CE separations since the 1990’s because of their low environmental impact and because their properties can easily be tuned by changing the amino acids in the chiral surfactant head groups. Using molecular dynamics simulations to investigate the structures and properties of AABMM is part of an ongoing study focusing on investigating and elucidating the factors responsible for chiral recognition with AABMM. The results will be useful for the proper design and selection of more efficient chiral selectors. The micelles investigated contained approximately twenty covalently linked surfactant monomers. Each monomer was in turn composed of an undecyl hydrocarbon chain bound to a dipeptide headgroup containing of all combinations of L-Alanine, L-Valine, and L-Leucine. These materials are of interest because they are effective chiral selectors in capillary electrophoresis separations. Molecular dynamics simulation analyses were used to investigate how the sizes and positions of the headgroup amino acid R-groups affected the solvent accessible surface areas of each AABMM chiral center. In addition, headgroup dihedral angle analyses were used to investigate how amino acid R-group size and position affected the overall headgroup conformations. Finally, distance measurements were used to study the structural and conformational flexibilities of each AABMM headgroup. All analyses were performed in the context of a broader study focused on developing structure-based predictive tools to identify the factors responsible for a) self-assembly, b) function, c) higher ordered structure and d) molecular recognition of these amino acid based molecular micelles.展开更多
In this article, the influence factors of trypsin extracted from crude pancreatin was investigated, and scanning turmeling microscope(STM) was used to observe the image of trypsin in butane-diacid-2-ethyl-hexyl-este...In this article, the influence factors of trypsin extracted from crude pancreatin was investigated, and scanning turmeling microscope(STM) was used to observe the image of trypsin in butane-diacid-2-ethyl-hexyl-ester-sulfonic sodium (AOT)/iso-octane reversed micelles. The STM image showed that trypsins bounded in reversed micelles was rigid, which weakened its conjugative effect and caused maximum ultraviolet absorption and fluorescence emissive absorption moving toward blue waves. AOT concentration, pH and cations were the main influence factors of extraction. Specifically, extraction percentage of trypsin decreased with the increase of AOT concentration from 0.01 to 0.1mol·L^-1. When pH value is from 5.30 to 10.0, i.e. less than pI of trypsin, the extraction percentage is raised with the different increase of pI-pH, but when the pH value is less than 5.20, the extraction percentage is decreased with the acidity added. Besides, the extraction efficiency is negative, related with the concentrations of Ca^2+, Na^+, K^+ which were in the range of 0.2-1.0mol.L^-1, and influence of concentration of Ca^2+ is greater than that of Na^+, and K^+ which has the minimum impact with the same concentration. Finally, optimum conditions to extract trypsin were: AOT reversed micelles 0.05mol·L^-1, trypsin concentration in crude pancreatin solution 3mg·ml^-1, pH 5.2-- 5.3, ratio (by volume) of extraction phase to strip-extraction phase 1 : 1, and time of 5min. The corresponding percentage of extraction was 22.7% and specific activity was 78.9 N-benzoyl-L-arginlne ethyl ester (BAEE) U·mg^-1 protein, three times than that in crude pancreatin. There was no lipase and amylopsin activity was decreased to 1/5 of crude pancreatin. Partly purifying solution was treated by condition mentioned above with 0.05mol·L^-1 ceryl-trimethyl-ammonium bromide (CTAB), total extraction percentage of trypsin was 74.18% and specific activity was 3148.3 BAEE U·mg^-1, i.e. 48.16 times purer than that in crude pancreatin. Through sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE) and image analysis of extracted product, there were only three bands in the trypsin, while seven in crude pancreatin, and electrophoresis location of main bend was almost identical with the standard enzyme.展开更多
基金This study was supported by the National Natural Science Foundation of China(No.U21A20270 and 32202079)Postdoctoral Science and Technology Project of Henan,Grant No.HN2022046+2 种基金Science and Technology Project of Henan Province(232103810064)the Innovative Funds Plan of Henan University of Technology(2021ZKCJ03)the Key Scientific Research Projects of Colleges and Universities of Henan(23A550012).
文摘The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer processes and models,which are helpful to better control the extraction process of oils and proteins.In this paper,mass transfer process of peanut protein extracted by bis(2-ethylhexyl)sodium sulfosuccinate(AOT)/isooctane reverse micelles was investigated.The effects of stirring speed(0,70,140,and 210 r/min),temperature of extraction(30,35,40,45,and 50℃),peanut flour particle size(0.355,0.450,0.600,and 0.900 mm)and solidliquid ratio(0.010,0.0125,0.015,0.0175,and 0.020 g/mL)on extraction rate were examined.The results showed that extraction rate increased with temperature rising,particle size reduction as well as solid-liquid ratio increase respectively,while little effect of stirring speed(P>0.05)was observed.The apparent activation energy of extraction process was calculated as 10.02 kJ/mol and Arrhenius constant(A)was 1.91 by Arrhenius equation.There was a linear relationship between reaction rate constant and the square of the inverse of initial particle radius(1/r_(0)^(2))(P<0.05).This phenomenon and this shrinking core model were anastomosed.In brief,the extraction process was controlled by the diffusion of protein from the virgin zone interface of particle through the reacted zone and it was in line with the first order reaction.Mass transfer kinetics of peanut protein extracted by reverse micelles was established and it was verified by experimental results.The results provide an important theoretical guidance for industrial production of peanut protein separation and purification.
基金supported by the National Natural Science Foundation of China(#81872220 and#81703437)Xinjiang Uygur Autonomous Region Science and Technology Support Project(#2020E0290)+4 种基金Basic Public Welfare Research Project of Zhejiang Province(#LGF18H160034,LGC21B050011 and#LGF20H300012),Science and Technology Bureau of Jiaxing(2020AY10021)Key Research and Development and Transformation project of Qinghai Province(2021-SF-C20)Dutch Cancer Foundation(KWF project#10666)a Zhejiang Provincial Foreign Expert Program Grant,Zhejiang Provincial Key Natural Science Foundation of China(#Z20H160031)and Jiaxing Key Laboratory of Oncological Photodynamic Therapy and Targeted Drug Research,and“Innovative Jiaxing·Excellent Talent Support Program”-Top Talents in Technological Innovation.
文摘Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect.To improve the treatment efficacy,we developed Pluronic P123(P123)-based polymeric micelles dually decorated with alendronate(ALN)and cancer-specific phage protein DMPGTVLP(DP-8)for targeted drug delivery to breast cancer bone metastases.Doxorubicin(DOX)was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity(3.44%).The DOX-loaded polymeric micelles were spherical,123 nm in diameter on average,and exhibited a narrow size distribution.The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release.The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells.Rapid binding of the micelles to hydroxyapatite(HA)microparticles indicated their high affinity for bone.P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model.In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity.In conclusion,our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.
基金supported by Scientific Research Project of Tianjin Municipal Education Commission (No.2019KJ080).
文摘Objective:Inhibition of tumor angiogenesis has become a new targeted tumor therapy.In this study,we established a micellar carrier with a tumor neovascularization-targeting effect modified by the neovascularization-targeting peptide NGR.Methods:The targeted polymer poly(ethylene glycol)-b-poly(lactide-co-glycolide)(PEG-PLGA)modified with Asn–Gly–Arg(NGR)peptide was prepared and characterized by 1H nuclear magnetic resonance and Fourier-transform infrared spectrometry.NGR-PEG-PLGA was used to construct curcumin(Cur)-loaded micelles by the solvent evaporation method.The physicochemical properties of the micelles were also investigated.Additionally,we evaluated the antitumor efficacy of the polymer micelles(PM)using in vitro cytology experiments and in vivo animal studies.Results:The particle size of Cur-NGR-PM was 139.70±2.51 nm,and the drug-loading capacity was 14.37±0.06%.In vitro cytological evaluation showed that NGR-modified micelles showed higher cellular uptake through receptor-mediated endocytosis pathways than did unmodified micelles,leading to the apoptosis of tumor cells.Then,in vivo antitumor experiments showed that the modified micelles significantly inhibited tumor growth and were safe.Conclusions:NGR-modified micelles significantly optimized the therapeutic efficacy of Cur.This strategy offers a viable avenue for cancer treatment.
基金This work was financially supported by Fundamental Research Funds for the Central Universities(2020NYB10).
文摘The appearance of multidrug-resistant bacteria and the formation of bacterial biofilms have necessitated the development of alternative antimicrobial therapeutics.Antibiotics conjugated with or embedded in nano-drug carriers show a great potential and advantage over free drugs,but the mass proportion of carriers generally exceeds 90%of the nano-drug,resulting in low drug loading and limited therapeutic output.Herein,we fabricated a nanocarrier using antibiotics as the building blocks,minimizing the use of carriermaterials,significantly increasing the drug loading content and treatment effect.Firstly,we conjugated betaine carboxylate with ciprofloxacin(CIP)through an ester bond to form the amphiphilic conjugate(CIP-CB),which self-assembled into micelles(CIP-CBMs)in aqueous solutions,with a CIP loading content as high as 65.4%and pH-induced surface charge reversal properties.Secondly,a model photosensitizer(5,10,15,20-tetraphenylporphyrin(TPP))was encapsulated in CIP-CBMs,generating infection-targeted photodynamic/antibiotic combined nanomedicines(denoted as TPP@CIP-CBMs).Upon accumulation at infection sites or in deep bacterial biofilms,the ester bond between the betaine carboxylate and CIP is cleaved to release free TPP and CIP,leading to a synergetic antibacterial and antibiofilm activity in vitro and in vivo.
基金High Level Talent Program of Hainan Natural Science Foundation (821RC569)National Natural Science Foundation-Regional Science Foundation Project (82060642)+3 种基金Hainan Provincial Association of Science and Technology Youth Science and Technology Talent Innovation Program Project (QCXM202029)Hainan Province Higher Education Science Research Project (Hnky2020-35)National Natural Science Foundation-Youth Science Foundation Project (81502998)Hainan Medical College 2022 College Student Innovation and Entrepreneurship Training Program Project (X202211810094)。
文摘Objective:Resveratrol polymer micelles with tissue adhesion were prepared and the content of resveratrol in the micelles was determined by HPLC.Method:The micelle adhesion experiment was carried out by polylysine orifice plate experiment and small animal fluorescence imaging method,and the micelle prescription was optimized to obtain resveratrol micelles with good adhesion.The separation was performed on a Shiseido SPOLAR C18 column(150 mm×4.6 mm,5μm)with methanol-water(42:58)as the mobile phase.The flow rate was 1.0 mL·min^(-1),the detection wavelength was 305 nm,the column temperature was 35℃,and the injection volume was 10μL.Results:Resveratrol micelles prepared with F127 alone had the best adhesion.The peak area and concentration of resveratrol had a good linear relationship in the concentration range of 10~200μg/mL(r=0.9996).The specificity,precision,recovery and stability all met the methodological requirements.Conclusion:In this experiment,resveratrol micelles with tissue adhesion were successfully prepared,and a method for the determination of resveratrol content in micelles was established.The method is accurate,rapid and simple.
基金financially supported by National Natural Science Foundation of China(No.81673363)
文摘To achieve targeted thrombolysis, a targeted delivery system of lumbrokinase(LK) was constructed using RGDfk-conjugated hybrid micelles. Based on the specific affinity of RGDfk to glycoprotein complex of GP Ⅱ b/Ⅲ a expressed on the surface of membrane of activated platelet, LK loaded targeted micelles(LKTM) can be delivered to thrombus. The hybrid micelles were composed of polycaprolactone-block-poly(2-(dimethylamino) ethyl methacrylate)(PCL-PDMAEMA), methoxy polyethylene glycol-block-polycaprolactone(mPEG-PCL)and RGDfk conjugated polycaprolactone-block-polyethylene glycol(PCL-PEG-RGDfk). PCLPDMAEMA was synthesized via ring open polymerization(ROP) and atom transfer radical polymerization(ATRP). PCL-PEG-RGDfk was synthesized via ROP and carbodiimide chemistry. The prepared LKTM was characterized by dynamic light scattering(DLS) and transmission electron microscope(TEM). Colloidal stability assay showed the prepared LKTM was stable. Biocompatibility assay was performed to determine the safe concentration range of polymer. The assay of fluorescent distribution in vivo demonstrated that LKTM can be efficiently delivered to thrombi in vivo. Thrombolysis in vivo indicated the thrombolytic potency of LKTM was optimal in all groups. Notably, the laboratory mice treated with LKTM exhibited a significantly shorter tail bleeding time compared to those treated with LK or LK-loaded micelles without RGDfk, which suggested that the targeted delivery of LK using RGDfk-conjugated hybrid micelles effectively reduced the bleeding risk.
文摘Aqueous solution of anionic surfactant,sodium oleate(NaOA),was studied by means of steady-state shear rheology and dynamic oscillatory technique.The system of NaOA/Na3PO4 showed high viscosity,strong viscoelasticity and good ability of countering Ca^2+,Mg^2+.The Maxwell model and Cole-Cole plot were applied to study the dynamic viscoelasticity of wormlike micelles.The microstructures of the wormlike micelles were characterized by FF-TEM.
文摘In this study, a p H-sensitive micelle self-assembled from poly(L-histidine) based triblock copolymers of poly(ethylene glycol)–poly(D,L-lactide)–poly(L-histidine)(mPEG-PLA-PHis) was prepared and used as the intracellular doxorubicin(Dox) delivery for cancer chemotherapy. Dox was loaded into the micelles by thin-film hydration method and a Box–Behnken design for three factors at three levels was used to optimize the preparations. The optimized mPEG-PLA-Phis/Dox micelles exhibited good encapsulation efficiency of 91.12%,a mean diameter of 45 nm and narrow size distribution with polydispersity index of 0.256.In vitro drug release studies demonstrated that Dox was released from the micelles in a p Hdependent manner. Furthermore, the cellular evaluation of Dox loaded micelles displayed that the micelles possessed high antitumor activity in vitro with an IC50 of 35.30 μg/ml against MCF-7/ADR cells. The confocal microscopy and flow cytometry experiments indicated that m PEG-PLA-Phis micelles mediated efficient cytoplasmic delivery of Dox with the aid of poly(Lhistidine) mediated endosomal escape. In addition, blank m PEG-PLA-Phis micelles were shown to be nontoxic to MCF-7/ADR cells even at a high concentration of 200 μg/ml. The pHsensitive mPEG-PLA-PHis micelles have been demonstrated to be a promising nanosystem for the intracellular delivery of Dox for MDR reversal.
基金This work was financially supported from the National Nature Science Foundation of China(NO.81360483)from the Nature Science Foundation of Ningxia(No.NZ12193).
文摘Most of the conventional chemotherapeutic agents used for cancer chemotherapy suffer from multidrug resistance of tumor cells and poor antitumor efficacy.Based on physiological differences between the normal tissue and the tumor tissue,one effective approach to improve the efficacy of cancer chemotherapy is to develop pH-sensitive polymeric micellar delivery systems.The copolymers with reversible protonationedeprotonation core units or acid-liable bonds between the therapeutic agents and the micelle-forming copolymers can be used to form pH-sensitive polymeric micelles for extracellular and intracellular drug smart release.These systems can be triggered to release drug in response to the slightly acidic extracellular fluids of tumor tissue after accumulation in tumor tissues via the enhanced permeability and retention effect,or they can be triggered to release drug in endosomes or lysosomes by pH-controlled micelle hydrolysis or dissociation after uptake by cells via the endocytic pathway.The pH-sensitive micelles have been proved the specific tumor cell targeting,enhanced cellular internalization,rapid drug release,and multidrug resistance reversal.The multifunctional polymeric micelles combining extracellular pH-sensitivity with receptor-mediated active targeting strategies are of great interest for enhanced tumor targeting.The micelles with receptor-mediated and intracellular pH targeting functions are internalized via receptor-mediated endocytosis followed by endosomal-pH triggered drug release inside the cells,which reverses multidrug resistance.The pH sensitivity strategy of the polymeric micelles facilitates the specific drug delivery with reduced systemic side effects and improved chemotherapeutical efficacy,and is a novel promising platform for tumor-targeting drug delivery.
基金Supported by the National Basic Research Program of China(No.2009CB930102)the National High Technology Research and Development Program of China(No.2007AA03Z535)+3 种基金the National Natural Science Foundation of China(No.21004062)the China-Japan-Korea Foresight Program(No.20621140369)"100 Talents Program" of the Chinese Academy of Sciences(No.KGCX2- YW-802) the Project of Jilin Provincial Science & Technology Department,China(No.200705110)
文摘Enhanced permeation and retention(EPR) targeting effect of rhodamine B labeled PEG-b-P(LA-co-DHP) [PEG:poly(ethylene glycol);LA:L-lactide;DHP:2,2-dihydroxylmethyl-propylene carbonate] micelles(RhB-micelles) was observed in H22 liver cancer bearing mice.The RhB-micelles were prepared by conjugating rhodamine B with the DHP units of amphiphilic block copolymer PEG-b-P(LA-co-DHP) followed by subsequent self-assembling of the conjugate.The parent copolymer PEG-b-P(LA-co-DHP) was synthesized by ring-opening copolymerization of LA and DHP with PEG as macroinitiator and diethyl zinc(ZnEt2) as catalyst.The micelles have a spherical shape and the average diameter is ca.50 nm by TEM(transmission electron microscope) or 80 nm by DLS(dynamic light scattering).Their in vitro cell uptake experiment by CLSM(confocal laser scanning microscopy) and flow cytometry showed preferential internalization of micelles by MCF-7 human breast cancer cells to free RhB.The in vivo tests by live animal imaging and ex vivo excised organ imaging showed that after vena tail injection,free RhB molecules were distributed in the whole body through the circulation system and then gradually metabolized and excreted and there was no preferential partition in tumor bed from the beginning to the end.But the RhB-micelles were preferentially distributed to the tumor bed so that their concentration(fluorescent intensity) in tumor bed got the level of the liver at a certain time point between 1 and 6 h and reached a maximum relative intensity at around 12 h,indicating an obvious EPR effect of RhB-micelles in H22 liver cancer.
基金supported by grants from the National Natural Science Foundation of China(No.81373342)the Nature Science Foundation of Beijing(No.2141004)
文摘This study primarily focused on the systematic assessment of both in vitro and in vivo anti-tumor effects of docetaxel-loaded polyethylene glycol(PEG)2000-polycaprolactone(PCL)2600 micelles on hormone-refractory prostate cancer(HRPC). By using solvent evaporation method, PEG-PCL was chosen to prepare doxetaxel(DTX)-loaded mPEG-PCL micelles(DTX-PMs), with the purpose of eliminating side effects of the commercial formulation(Tween 80) and prolonging the blood circulation time. The prepared DTX-PMs had an average particle size of 25.19±2.36 nm, a zeta potential of 0.64±0.15 mV, a polydispersity index of 0.56±0.03, a drug loading of(8.72±1.05)%, and an encapsulation efficiency of(98.1±8.4)%. In vitro cytotoxicity studies indicated that DTX-PMs could effectively kill LNCap-C4-2B cells and show a dose- and time-dependent efficacy. The hemolysis test showed that DTX-PMs had less hemocytolysis than the commercial product of Duopafei. A sustained in vitro release behavior and prolonged circulation time in blood vessels were observed in the DTX-PMs. Furthermore, when compared with Duopafei, the DTX-PMs dramatically reduced the prostate specific antigen(PSA) level and tumor growth of prostate tumor-bearing nude mice in vivo. In conclusion, the DTX-PMs can lower systemic side effects, improve anti-tumor activity with prolonged blood circulation time, and will bring an alternative to patients with HRPC.
文摘The UV-Vis spectra of THPPH2 in CTAB micelles at pH7.2 and pH11.0 were analyzed to study the effect of micellar environments on the aggregation behaviors of this porphyrin.
基金the Liaoning Province Pan Deng Xue Zhe Grant(M.Yang)Liaoning Provincial Education officer’s Excellent Talents Supporting Plan(D.Cun)National Natural Science Foundation of China(No.81302720 and 81573380)for financial support。
文摘Co-delivery of anti-cancer drugs is promising to improve the efficacy of cancer treatment.This study was aiming to investigate the potential of concurrent delivery of resveratrol(RES)and docetaxel(DTX)via polymeric nanocarriers to treat breast cancer.To this end,methoxyl poly(ethylene glycol)-poly(D,L-lactide)copolymer(mPEG-PDLA)was prepared and characterized using FTIR and 1H NMR,and their molecular weights were determined by GPC.Isobologram analysis and combination index calculation were performed to find the optimal ratio between RES and DTX to against human breast adenocarcinoma cell line(MCF-7 cells).Subsequently,RES and DTX were loaded in the mPEG-PDLA micelles simultaneously,and the morphology,particle size distribution,in vitro release,pharmacokinetic profiles,as well as cytotoxicity to the MCF-7 cells were characterized.IC50 of RES and DTX in MCF-7 cells were determined to be 23.0μg/ml and 10.4μg/ml,respectively,while a lower IC50 of 4.8μg/ml of the combination of RES and DTX was obtained.The combination of RES and DTX at a ratio of 1:1(w/w)generated stronger synergistic effect than other ratios in the MCF-7 cells.RES and DTX loaded mPEG-PDLA micelles exhibited prolonged release profiles,and enhanced cytotoxicity in vitro against MCF-7 cells.The AUC(0→t)of DTX and RES in mPEG-PDLA micelles after i.v.administration to rats were 3.0-fold and 1.6-fold higher than that of i.v.injections of the individual drugs.These findings indicated that the co-delivery of RES and DTX using mPEG-PDLA micelles could have better treatment of tumors.
基金Supported by the National Natural Science Foundation of China (20676098).
文摘Reverse micelles bring mild and effective microenvironments in organic solvent that contain bitmolecules, which have attracted immense attention for application in the isolation of proteins, protein refolding, and enzymatic reaction. In this review, the application of reverse micelles for protein separation and refolding has been briefly summarized and various reverse micellar systems composed of different surfactants, including ionic, non- ionic, mixed, and affinity-based reverse micelles, have been highlighted. It illustrates especially the potential application of the novel affinity-based reverse micelles consisting of biocompatible surfactant coupled with affinity ligands. Moreover, the importance to develop universal affinity-based reverse micelles for protein separation and refolding in the downstream processing of biotechnology has been pointed out.
基金financial support to the National Natural Science Foundation of China (81202480,81302723 )the Natural Science Foundation of Liaoning Province (2015020749)+1 种基金the Innovative training program for college students (201710163000080)support of the Pharmacology Laboratory Centre and the Animal Centre of Shenyang Pharmaceutical University
文摘The in situ gelling hybrid hydrogel system has been reported to effectively concentratechemotherapeutic drugs at the tumor site and sustain their release for a long period. DTX-micelles(docetaxel-loaded mixed micelles) are able to increase the solubility of DTX inwater, and then a high drug loading rate of hydrogels can be achieved by encapsulatingthe docetaxel-loaded mixed micelles into the hydrogels. The thermosensitive nature ofDTX-MM-hydrogels(thermosensitive hydrogels incorporated with docetaxel-loaded mixedmicelles) can accelerate the formation of a depot of this drug-loaded system at the siteof administration. Therefore, the hydrogels provide a much slower release compared withDTX-micelles and DTX-injection. An in vivo retention study has demonstrated that the DTX-MM-hydrogels can prolong the drug retention time and in viv o trials have shown that theDTX-MM-hydrogels have a higher antitumor efficacy and systemic safety. In conclusion, theDTX-MM-hydrogels prepared in this study have considerable potential as a drug deliverysystem, with higher tumor inhibition effects and are less toxic to normal tissues.
文摘The extraction of cytochrome C was carried out by means of phase transfer technique with three different reverse micellar systems, i.e. , a CTAB micellar solution in n butyl alcohol chloroform(volume ratio 4∶1), an AOT micellar solution in isooctane and a SDSS D 2EHPA micellar solution in isooctane. The extraction mechanisms were studied. The results show that the extraction mechanisms for the same proteins with different types of reverse micellar systems can be distinct. The extraction of cytochrome C with CTAB and SDSS D 2EHPA reverse micellar systems are carried out according to the mechanism of electrostatic interaction. However, in the extraction of cytochrome C with the AOT reverse micellar system, the electrostatic interaction between the protein and the surfactant is not important.
基金support by the National Natural Science Foundation of China(No.20474068)the support from the Outstanding Overseas Chinese Scholars Funds of the Chinese Academy of Sciences.
文摘Reported here is fabrication of optically active micelles with broad range of morphologies in water, such as spheres, cylinders, and vesicles, from self-assembly of poly(ethylene glycol) monomethyl ether-b-poly- (methacryloyl-L-leucine methyl ester) (MPEG-b-PMALM) copolymer, which was prepared via atom transfer radical polymerization (ATRP) from vinyl monomer bearing chiral amino acid moieties, N-methacryloyl L-leucine methyl ester (MALM), using bromine (Br) end-capped poly(ethylene golycol) monomethylether (MPEG-Br) as macroinitiator in the presence of CuBr/Me6TREN as catalytic system.
基金the National Natural Science Foundation of China(NSFC 81102399).
文摘To investigate the effect of supersaturation induced by micelle formation during dissolution on the bioavailability of itraconazole(ITZ)/Soluplus~? solid dispersion. Solid dispersions prepared by hot melt extrusion (HME) were compressed into tablets directly with other excipients. Dissolution behavior of ITZ tablets was studied by dissolution testing and the morphology of micelles in dissolution media was studied using transmission electron microscopy (TEM). Drug transferring from stomach into intestine was simulated to obtain a supersaturated drug solution. Bioavailability studies were performed on the ITZ tablets and Sporanox~? in beagle dogs. The morphology of micelles in the dissolution media was observed to be spherical in shape, with an average size smaller than 100 nm. The supersaturated solutions formed by Soluplus~? micelles were stable and no precipitation took place over a period of 180 min. Compared with Sporanox~?, ITZ tablets exhibited a 2.50-fold increase in the AUC (0–96) of ITZ and a 1.95-fold increase in its active metabolite hydroxyitraconazole (OHITZ) in the plasma of beagle dogs. The results obtained provided clear evidence that not only the increase in the dissolution rate in the stomach, but also the supersaturation produced by micelles in the small intestine may be of great assistance in the successful development of poorly water-soluble drugs. The micelles formed by Soluplus~? enwrapped the molecular ITZ inside the core which promoted the amount of free drug in the intestinal cavity and carried ITZ through the aqueous boundary layer(ABL), resulting in high absorption by passive transportation across biological membranes. The uptake of intact micelles through pinocytosis together with the inhibition of P-glycoprotein-mediated drug efflux in intestinal epithelia contributed to the absorption of ITZ in the gastrointestinal tract. These results indicate that HME with Soluplus~?, which can induce supersaturation by micelleformation, may be of great assistance to the successful development of poorly watersoluble drugs.
文摘The enantiomers of chiral drugs often have different potencies, toxicities, and biochemical properties. Therefore, the FDA and other worldwide regulatory agencies require manufactures to test and prove the enantiomeric purity of chiral drugs. Amino acid based molecular micelles (AABMM) have been used in chiral CE separations since the 1990’s because of their low environmental impact and because their properties can easily be tuned by changing the amino acids in the chiral surfactant head groups. Using molecular dynamics simulations to investigate the structures and properties of AABMM is part of an ongoing study focusing on investigating and elucidating the factors responsible for chiral recognition with AABMM. The results will be useful for the proper design and selection of more efficient chiral selectors. The micelles investigated contained approximately twenty covalently linked surfactant monomers. Each monomer was in turn composed of an undecyl hydrocarbon chain bound to a dipeptide headgroup containing of all combinations of L-Alanine, L-Valine, and L-Leucine. These materials are of interest because they are effective chiral selectors in capillary electrophoresis separations. Molecular dynamics simulation analyses were used to investigate how the sizes and positions of the headgroup amino acid R-groups affected the solvent accessible surface areas of each AABMM chiral center. In addition, headgroup dihedral angle analyses were used to investigate how amino acid R-group size and position affected the overall headgroup conformations. Finally, distance measurements were used to study the structural and conformational flexibilities of each AABMM headgroup. All analyses were performed in the context of a broader study focused on developing structure-based predictive tools to identify the factors responsible for a) self-assembly, b) function, c) higher ordered structure and d) molecular recognition of these amino acid based molecular micelles.
文摘In this article, the influence factors of trypsin extracted from crude pancreatin was investigated, and scanning turmeling microscope(STM) was used to observe the image of trypsin in butane-diacid-2-ethyl-hexyl-ester-sulfonic sodium (AOT)/iso-octane reversed micelles. The STM image showed that trypsins bounded in reversed micelles was rigid, which weakened its conjugative effect and caused maximum ultraviolet absorption and fluorescence emissive absorption moving toward blue waves. AOT concentration, pH and cations were the main influence factors of extraction. Specifically, extraction percentage of trypsin decreased with the increase of AOT concentration from 0.01 to 0.1mol·L^-1. When pH value is from 5.30 to 10.0, i.e. less than pI of trypsin, the extraction percentage is raised with the different increase of pI-pH, but when the pH value is less than 5.20, the extraction percentage is decreased with the acidity added. Besides, the extraction efficiency is negative, related with the concentrations of Ca^2+, Na^+, K^+ which were in the range of 0.2-1.0mol.L^-1, and influence of concentration of Ca^2+ is greater than that of Na^+, and K^+ which has the minimum impact with the same concentration. Finally, optimum conditions to extract trypsin were: AOT reversed micelles 0.05mol·L^-1, trypsin concentration in crude pancreatin solution 3mg·ml^-1, pH 5.2-- 5.3, ratio (by volume) of extraction phase to strip-extraction phase 1 : 1, and time of 5min. The corresponding percentage of extraction was 22.7% and specific activity was 78.9 N-benzoyl-L-arginlne ethyl ester (BAEE) U·mg^-1 protein, three times than that in crude pancreatin. There was no lipase and amylopsin activity was decreased to 1/5 of crude pancreatin. Partly purifying solution was treated by condition mentioned above with 0.05mol·L^-1 ceryl-trimethyl-ammonium bromide (CTAB), total extraction percentage of trypsin was 74.18% and specific activity was 3148.3 BAEE U·mg^-1, i.e. 48.16 times purer than that in crude pancreatin. Through sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE) and image analysis of extracted product, there were only three bands in the trypsin, while seven in crude pancreatin, and electrophoresis location of main bend was almost identical with the standard enzyme.