Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier r...Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier researchers have explored the design,development,and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation.Researchers have investigated various aspects such as aerodynamic considerations,structural integrity,efficiency optimization to ensure reliable and cost-effective operation,blade design,generator selection,and control strategies to enhance the overall performance of the system.The objective of this paper is to provide a comprehensive design and performance review of horizontal and vertical micro-wind turbines.The study begins with an overview of the current landscape of wind energy across the globe and India in particular,highlighting key challenges and opportunities.Numerical and experimental studies were used to validate the designs.Horizontal Axis Wind Turbines(HAWTs)with ducts or shrouds are suitable for microscale and low-speed applications.Researchers investigated the position and location of the turbines to enhance their performance in urban settings.Airflow and airfoil noise produce aerodynamic noise,which is the most significant disadvantage of wind turbines.The findings provide valuable insights for stakeholders interested in advancing micro-wind turbine technology.The highlighted research opportunities may be pursued further to improve the efficiency,reliability,and overall performance of micro-wind turbines.展开更多
The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400...The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400 MPa, and hydrogen embrittlement had little influence even though the sample contained about 8.1 times more hydrogen. Thus, the sensitivity of hydrogen gas in this material is very low. A surface crack initiation, growth, coalescence, and micro ridge model is proposed in this study. Slip line formation?⇒microcrack formation?⇒increases in the crack width, and blunting of the crack tip as it grows?⇒formation of many slip lines because of deformation in the shear direction?⇒growth of the crack in the shear direction, forming micro ridges, coalescence with adjacent cracks ⇒?continuous initiation, growth, coalescence, and ridge formation of surface cracks and specimen breakage.展开更多
The objective of our study is to investigate the effect of rapid solidification technology using melt spun process from melt on environmentally free machining Al-0.1Zn alloys with tin-bismuth as free machining constit...The objective of our study is to investigate the effect of rapid solidification technology using melt spun process from melt on environmentally free machining Al-0.1Zn alloys with tin-bismuth as free machining constituents. The main purpose of rapid solidification from melt is to have a high strength and thermal stability. Structural and thermal properties have been investigated by x-ray diffraction (XRD), scanning electron microscope (SEM) and differential scanning calorimetry (DSC) techniques. Tensile test machine is used to study the mechanical properties such as ultimate tensile strength, elastic constants, yield strength and critical shear stress for free machining alloys. We find?the best free machining aluminum alloy that has excellent machinability qualities is Al-0.1Zn-0.5Sn-0.54Bi melt spun alloy because it offers excellent mechanical properties. The highest values of tensile strength (431.5 MPa), yield strength (393.9 MPa), fracture strength (431.6 Mpa), toughness (15.8 × 106?J/m3) generated from Al-0.1Zn-0.5Sn-0.54Bi alloy to meet the needs of free machining aluminum alloy applications.展开更多
文摘Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier researchers have explored the design,development,and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation.Researchers have investigated various aspects such as aerodynamic considerations,structural integrity,efficiency optimization to ensure reliable and cost-effective operation,blade design,generator selection,and control strategies to enhance the overall performance of the system.The objective of this paper is to provide a comprehensive design and performance review of horizontal and vertical micro-wind turbines.The study begins with an overview of the current landscape of wind energy across the globe and India in particular,highlighting key challenges and opportunities.Numerical and experimental studies were used to validate the designs.Horizontal Axis Wind Turbines(HAWTs)with ducts or shrouds are suitable for microscale and low-speed applications.Researchers investigated the position and location of the turbines to enhance their performance in urban settings.Airflow and airfoil noise produce aerodynamic noise,which is the most significant disadvantage of wind turbines.The findings provide valuable insights for stakeholders interested in advancing micro-wind turbine technology.The highlighted research opportunities may be pursued further to improve the efficiency,reliability,and overall performance of micro-wind turbines.
文摘The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400 MPa, and hydrogen embrittlement had little influence even though the sample contained about 8.1 times more hydrogen. Thus, the sensitivity of hydrogen gas in this material is very low. A surface crack initiation, growth, coalescence, and micro ridge model is proposed in this study. Slip line formation?⇒microcrack formation?⇒increases in the crack width, and blunting of the crack tip as it grows?⇒formation of many slip lines because of deformation in the shear direction?⇒growth of the crack in the shear direction, forming micro ridges, coalescence with adjacent cracks ⇒?continuous initiation, growth, coalescence, and ridge formation of surface cracks and specimen breakage.
文摘The objective of our study is to investigate the effect of rapid solidification technology using melt spun process from melt on environmentally free machining Al-0.1Zn alloys with tin-bismuth as free machining constituents. The main purpose of rapid solidification from melt is to have a high strength and thermal stability. Structural and thermal properties have been investigated by x-ray diffraction (XRD), scanning electron microscope (SEM) and differential scanning calorimetry (DSC) techniques. Tensile test machine is used to study the mechanical properties such as ultimate tensile strength, elastic constants, yield strength and critical shear stress for free machining alloys. We find?the best free machining aluminum alloy that has excellent machinability qualities is Al-0.1Zn-0.5Sn-0.54Bi melt spun alloy because it offers excellent mechanical properties. The highest values of tensile strength (431.5 MPa), yield strength (393.9 MPa), fracture strength (431.6 Mpa), toughness (15.8 × 106?J/m3) generated from Al-0.1Zn-0.5Sn-0.54Bi alloy to meet the needs of free machining aluminum alloy applications.