期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Surface Roughness in Micro-nano Scale on Slotted Waveguide Arrays in Ku-band
1
作者 Na LI Peng LI Liwei SONG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期595-603,共9页
Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and effic... Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and efficiency of the SWA in Ku-band. Firstly, the roughness is simulated using the electromechanical coupled(EC) model. The relationship between roughness and the antenna's radiation properties is obtained. For verification, an antenna proto- type is manufactured and tested, and the simulation method is introduced. According to the prototype, a contrasting experiment dealing with the flatness of the radiating plane is conducted to test the simulation method. The advantage of the EC model is validated by comparisons of the EC model and two classical roughness models (sine wave and fractal function), which shows that the EC model gives a more accurate description model for roughness, the maxi- mum error is 13%. The existence of roughness strongly broadens the beamwidth and raises the side-lobe level of SWA, which is 1.2 times greater than the ideal antenna. In addition, effect of the EC model's evaluation indices is investigated, the most affected scale of the roughness is found, which is 1/10 of the working wavelength. The proposed research provides the instruction for antenna designing and manufacturing. 展开更多
关键词 Slotted waveguide arrays - Roughness model micro/nano-scale Amplitude and phase errors Radiationcharacteristics
下载PDF
Micro ball-end milling of freeform titanium parts 被引量:1
2
作者 Ali Mamedov Ismail Lazoglu 《Advances in Manufacturing》 SCIE CAS CSCD 2015年第4期263-268,共6页
Micro machining has growing number of applications in various industries such as biomedical, automotive, aerospace, micro-sensor, micro-actuator and jewelry industries. Small-sized freeform titanium parts are frequent... Micro machining has growing number of applications in various industries such as biomedical, automotive, aerospace, micro-sensor, micro-actuator and jewelry industries. Small-sized freeform titanium parts are frequently needed in the biomedical applications, especially in the implantations such as mini-blood pumps and mini left-ventricular assist devices, finger joint replacements and small bone implants. Most of the small-sized titanium parts with freeform geometries are machined using micro ball-end milling before polishing and other surface treatments. Decreasing the cycle time of the machining parts is important for the productivity. In order to reduce the cycle time of the roughing process in the micro ball-end milling, this paper investigates the imple- mentation of a previously developed force-based feedrate scheduling (FFS) technique on micro milling of freeform titanium parts. After briefly introducing the instantaneous micro milling forces in micro ball-end milling of titanium parts with freeform surfaces, the FFS technique is implemented in the rough machining of a freeform titanium surface to demonstrate the cycle time reduction potentials via virtual micro milling simulations. 展开更多
关键词 micro milling Roughing - Feedrate scheduling - Force model - Titanium - Ti-6Al-4V
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部