Nanocrystalline diamond films were deposited on Co-cemented carbide substrates using acetone/ H<sub>2</sub>/Ar gas mixture by bias-enhanced hot filament chemical vapor deposition(HFCVD) technique.The evi...Nanocrystalline diamond films were deposited on Co-cemented carbide substrates using acetone/ H<sub>2</sub>/Ar gas mixture by bias-enhanced hot filament chemical vapor deposition(HFCVD) technique.The evidence of nanocrystallinity,smoothness and purity was obtained by characterizing the sample with scanning electron microscopy(SEM),X-ray diffraction(XRD),Raman spectroscopy,atomic force microscopy (AFM ),and field emission transmission electron microscopy(FE-TEM ).The results show that nanocrystalline diamond films consists of nanocrystalline diamond grains with sizes range from 20 to 80 nm and contain a large amount of grain boundaries.The surface roughness of the films is measured as R<sub>a</sub>【50nm.The Raman spectroscopy,XRD pattern,and FE-TEM image of the films indicate the presence of nanocrystalline diamond.A new process is used to deposit composite diamond coatings by a two-step chemical vapor deposition procedure,including first the deposition of the rough polycrystalline diamond and then the smooth fine-grained nanocrystalline diamond film.Such composite diamond coatings not only display good adhesion and wear resistant properties,but also have smooth surfaces that are liable to polishing.This coating technology can not only meet the requirement of the adhesion of diamond coatings,but also reduce surface roughness of diamond coatings effectively,thus remove the obstacles for the industrialization of CVD diamond coatings.The diamondcoated dies with these composite coatings show obvious effect in the practical application.展开更多
A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a r...A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.展开更多
采用偏压辅助增强热丝化学气相沉积法(Chemical vapor deposition,CVD),以WC-Co硬质合金为衬底,采用控制沉积参数和添加惰性气体Ar等CVD新工艺,制备性能优良的纳米金刚石薄膜。进一步采用扫描电镜(Scanning electron microscopy,SEM)、...采用偏压辅助增强热丝化学气相沉积法(Chemical vapor deposition,CVD),以WC-Co硬质合金为衬底,采用控制沉积参数和添加惰性气体Ar等CVD新工艺,制备性能优良的纳米金刚石薄膜。进一步采用扫描电镜(Scanning electron microscopy,SEM)、原子力显微镜(Atomic force microscopy,AFM)、拉曼光谱(Raman spectros- copy)、X射线衍射(X-ray diffraction,XRD)和高分辨率透射电镜(High-resolution transmission electron microscopy, HR-TEM)分析了薄膜的纳米效应。研究结果表明:纳米涂层仍然是以金刚石结构为主的多晶体,它晶体颗粒较小(20~80 nm),含有较多的晶界和sp^2结构,涂层表面粗糙度R_a≤50 nm,表面平整光滑,有利于研磨抛光。在此基础上,提出纳米金刚石复合涂层制备新技术,开发研制出各种涂层拉拔模具,在实际生产线上进行了应用,取得了显著的效果。展开更多
在30kW级直流电弧等离子体喷射化学气相沉积(DC Arc P lasm a Jet CVD)设备上,采用Ar-H2-CH4混合气体,通过调节甲烷浓度以及控制其他沉积参数,在Mo衬底上沉积出微/纳米复合自支撑金刚石膜。实验表明,当微米金刚石膜层沉积结束后,在随后...在30kW级直流电弧等离子体喷射化学气相沉积(DC Arc P lasm a Jet CVD)设备上,采用Ar-H2-CH4混合气体,通过调节甲烷浓度以及控制其他沉积参数,在Mo衬底上沉积出微/纳米复合自支撑金刚石膜。实验表明,当微米金刚石膜层沉积结束后,在随后的沉积中,随着甲烷浓度的增加,金刚石膜表面的晶粒大小是逐渐减小的。当甲烷浓度达到20%以上时,金刚石膜生长面晶粒呈现菜花状的小晶团,膜体侧面已经没有了粗大的柱状晶,而是呈现出光滑的断口,对该层进行拉曼谱分析显示,位于1145 cm-1附近有一定强度的散射峰出现。这说明所沉积的晶粒全部变为纳米级尺寸。展开更多
基金Supported by the National Natural Science Foundation of China(50575135)
文摘Nanocrystalline diamond films were deposited on Co-cemented carbide substrates using acetone/ H<sub>2</sub>/Ar gas mixture by bias-enhanced hot filament chemical vapor deposition(HFCVD) technique.The evidence of nanocrystallinity,smoothness and purity was obtained by characterizing the sample with scanning electron microscopy(SEM),X-ray diffraction(XRD),Raman spectroscopy,atomic force microscopy (AFM ),and field emission transmission electron microscopy(FE-TEM ).The results show that nanocrystalline diamond films consists of nanocrystalline diamond grains with sizes range from 20 to 80 nm and contain a large amount of grain boundaries.The surface roughness of the films is measured as R<sub>a</sub>【50nm.The Raman spectroscopy,XRD pattern,and FE-TEM image of the films indicate the presence of nanocrystalline diamond.A new process is used to deposit composite diamond coatings by a two-step chemical vapor deposition procedure,including first the deposition of the rough polycrystalline diamond and then the smooth fine-grained nanocrystalline diamond film.Such composite diamond coatings not only display good adhesion and wear resistant properties,but also have smooth surfaces that are liable to polishing.This coating technology can not only meet the requirement of the adhesion of diamond coatings,but also reduce surface roughness of diamond coatings effectively,thus remove the obstacles for the industrialization of CVD diamond coatings.The diamondcoated dies with these composite coatings show obvious effect in the practical application.
文摘A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.
文摘在30kW级直流电弧等离子体喷射化学气相沉积(DC Arc P lasm a Jet CVD)设备上,采用Ar-H2-CH4混合气体,通过调节甲烷浓度以及控制其他沉积参数,在Mo衬底上沉积出微/纳米复合自支撑金刚石膜。实验表明,当微米金刚石膜层沉积结束后,在随后的沉积中,随着甲烷浓度的增加,金刚石膜表面的晶粒大小是逐渐减小的。当甲烷浓度达到20%以上时,金刚石膜生长面晶粒呈现菜花状的小晶团,膜体侧面已经没有了粗大的柱状晶,而是呈现出光滑的断口,对该层进行拉曼谱分析显示,位于1145 cm-1附近有一定强度的散射峰出现。这说明所沉积的晶粒全部变为纳米级尺寸。