期刊文献+
共找到5,450篇文章
< 1 2 250 >
每页显示 20 50 100
Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation 被引量:2
1
作者 Yingjie Zhao Xing Yin +4 位作者 Pengwei Li Ziqiu Ren Zhenkun Gu Yiqiang Zhang Yanlin Song 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期565-594,共30页
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement... Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. 展开更多
关键词 Perovskite materials Crystal structure design micro/nano-structure manipulation Working mechanism Multifunctional photodetectors
下载PDF
Generating micro/nanostructures on magnesium alloy surface using ultraprecision diamond surface texturing process
2
作者 Hanheng Du Mengnan Jiang +2 位作者 Zuankai Wang Zhiwei Zhu Suet To 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1472-1483,共12页
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm... The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics. 展开更多
关键词 Magnesium alloy micro/NANOstructure Ultraprecision diamond surface texturing Cutting force Chip morphology structural color
下载PDF
Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe-N-C catalyst 被引量:4
3
作者 Liqin Gao Meiling Xiao +3 位作者 Zhao Jin Changpeng Liu Junjie Ge Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期17-23,I0002,共8页
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the ac... Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts. 展开更多
关键词 HIERARCHICAL meso/micro-pore structure HYDROGEN ETCHING Single site Fe-N-C catalysts Carbon-nitrogen-coordinated iron(FeN4) Oxygen reduction reaction
下载PDF
Recent development of LiNi_xCo_yMn_zO_2:Impact of micro/nano structures for imparting improvements in lithium batteries 被引量:8
4
作者 潘成迟 Craig E.BANKS +3 位作者 宋维鑫 王驰伟 陈启元 纪效波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期108-119,共12页
The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materia... The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing. 展开更多
关键词 lithium-ion battery micro/nano structures LiNixCoyMnzO2 DOPING surface coating composite materials
下载PDF
Correlation of Microstructure of Leaf Sheath Epidermis and Nutrient Composition of Palm Plants with the Damage Degree of Red Palm Fiber Elephant 被引量:1
5
作者 申晓萍 欧善生 +3 位作者 谢彦洁 王小欣 覃连红 侯亮 《Plant Diseases and Pests》 CAS 2010年第2期58-62,共5页
[ Objective] Correlation of microstructure of leaf sheath epidermis and nutrient composition of palm plants with the damage degree of red palm fiber elephant in four kinds of plants in Nanning were analyzed in order t... [ Objective] Correlation of microstructure of leaf sheath epidermis and nutrient composition of palm plants with the damage degree of red palm fiber elephant in four kinds of plants in Nanning were analyzed in order to control the occurrence and damage of this insect in Nanning. [Method] Taken 4 kinds of Palmae plants in Nanning including Ravenea fivulafis, Washingtonia filifera, Phoenix canafiensis, Roystonea regia (HBK.)O. F. Cook as materials, damage situation of the red palm fiber elephant was investigated, microstructure of leaf sheath epidermis and nutrient composition of palm plants were analyzed and determined. [ Result] The results showed that there was direct correlation between the microstructure of leaf sheath epidermis and nutrient composition with the physical resistance of palm plant against red palm fiber elephant. The extend of damage from red palm fiber elephant had negatively relation with the thickness of corneum and leaf epidermis. The damage degree caused by red palm fiber elephant increased with the content of crude protein, crude ash and nitrogen free extract increasing, also increased with the content of rude fiber decreasing. [Condusion] The damage degree of red palm fiber elephant had a relationship with microstructure of leaf sheath epidermis and nutrient composition of palm plants. 展开更多
关键词 PALM Leaf sheath epidermis micro/structure Nutrition ingredients Red palm fiber elephant
下载PDF
Effects of Microporous Structure of Activated Carbon on Adsorption Performance of N-butane
6
作者 刘晓敏 邓先伦 +1 位作者 朱光真 王国栋 《Agricultural Science & Technology》 CAS 2012年第1期13-16,92,共5页
[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologi... [Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologies, the effects of physical prop- erties of activated carbon on butane adsorption performance were investigated. [Result] Specific surface area, pore volume and pore size distribution of activated carbon exert- ed remarkable effects on butane adsorption. The activated carbon with high percent- age of micropore volume within the range of 1.2-2 nm possessed high butane activity. The level of butane retentivity rose with the increase of the volume of pore within the range of 0.5-0,9 nm, which led to smaller butan working capacity (BWC). [Conclusion] The study provided reference for the adsorption research for activated carbon. 展开更多
关键词 Activated carbon BWC micro'porous structure Adsorption mechanism
下载PDF
Synthesis of porous nano/micro structured LiFePO_4/C cathode materials for lithium-ion batteries by spray-drying method 被引量:1
7
作者 管晓梅 李国军 +1 位作者 黎春阳 任瑞铭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期141-147,共7页
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result... In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres. 展开更多
关键词 LiFePO4/C cathode nano/micro structure porous material spray drying electrochemical properties
下载PDF
Construction and Properties of Structure-and Size-controlled Micro/Nano-energetic Materials 被引量:20
8
作者 HUANG Bing CAO Minhua +2 位作者 NIE Fude HUANG Hui HU Changwen 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期75-103,共29页
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development... The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given. 展开更多
关键词 applied chemistry structure SIZE micro/nano-energetic materials construction technology PROPERTY
下载PDF
REHEATING TEMPERATURE CONTRAST AND MICROSTRUCTURES OF 7075 Al ALLOY CAST BY LIQUIDUS SEMI-CONTINUOUS CASTING 被引量:9
9
作者 J. Dong, G.M. Lu and J.Z. CuiThe Key Lab. of Electromagnetic Processing of Material, Ministry of Education, Northeastern University, Shenvane 110004, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第6期551-555,共5页
In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investig... In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investigated, then the reheating microstructures were investigated. Results show that: the difference of temperature between the outer and center is small and the difference of their microstructures are also small. During reheating at 576℃ the spheroidization of grains is significant after 5min and no rosettes are visible after 20min by optical microscopy. Similar observations were madeon materials reheated at 596℃, but the ripening process is faster. The grains growup to 30-60μm, fine enough for thixoforming. 展开更多
关键词 REHEATING 7075 Al alloy liquidus casting micro structure
下载PDF
Synthesis of hierarchical dendritic micro–nano structure ZnFe_2O_4 and photocatalytic activities for water splitting 被引量:5
10
作者 Zhongping Yao Yajun Zhang +2 位作者 Yaqiong He Qixing Xia Zhaohua Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第8期1112-1116,共5页
Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electr... Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electron microscopy were used to characterize the crystal structure, size and morphology. The results show that the sample(S-2) is composed of pure ZnFe_2O_4 when the molar ratio of Zn^(2+)/Fe^(2+)in the electrolyte is 0.35. Decreasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-1) is composed of ZnFe_2O_4 and α-Fe_2O_3, whereas increasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-3) is composed of ZnFe_2O_4 and Zn O. The lattice parameters of ZnFe_2O_4 are influenced by the molar ratio of Zn^(2+)/Fe: Zn at excess decreases the cell volume whereas Fe at excess increases the cell volume of Zn Fe_2O_4. All the samples have the dendritic structure, of which S-2 has micron-sized lush branches with nano-sized leaves. UV–Vis diffuse reflectance spectra were acquired by a spectrophotometer. The absorption edges gradually blue shift with the increase of the molar ratio of Zn^(2+)/Fe^(2+). Photocatalytic activities for water splitting were investigated under Xe light irradiation in an aqueous olution containing 0.1 mol·L^(-1)Na_2S/0.02 mol·L^(-1)Na_2SO_3 in a glass reactor. The relatively highest photocatalytic activity with 1.41 μmol·h-1· 0.02 g^(-1)was achieved by pure ZnFe_2O_4sample(S-2). The photocatalytic activity of the mixture phase of Zn Fe_2O_4 and α-Fe_2O_3(S-1) is better than ZnF e_2O_4 and ZnO(S-3). 展开更多
关键词 ZNFE2O4 ELECTROCHEMICAL reduction and thermal OXIDATION DENDRITIC micro–nano structure Hydrogen production
下载PDF
Micro Electrical Discharge Machining Deposition in Air for Fabrication of Micro Spiral Structures 被引量:4
11
作者 PENG Zilong CHI Guanxin WANG Zhenlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期154-160,共7页
Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the m... Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures. 展开更多
关键词 micro electrical discharge machining deposition micro spiral structure forming mechanism fine texture analysis
下载PDF
Progress in molecular-simulation-based research on the effects of interface-induced fluid microstructures on flow resistance 被引量:2
12
作者 Yumeng Zhang Yudan Zhu +4 位作者 AnranWang Qingwei Gao Yao Qin Yaojia Chen Xiaohua Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第6期1403-1415,共13页
In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fund... In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fundamental mechanism underlying interfacial transport remains incompletely understood given the complexity of heterogeneous interfacial molecular interactions and the high nonideality of the fluid involved. Thus, understanding the effects of interface-induced fluid microstructures on flow resistance is the first step in further understanding interfacial transport. Molecular simulation has become an indispensable method for the investigation of fluid microstructure and flow resistance. Here, we reviewed the recent research progress of our group and the latest relevant works to elucidate the contribution of interface-induced fluid microstructures to flow resistance.We specifically focused on water, ionic aqueous solutions, and alcohol–water mixtures given the ubiquity of these fluid systems in modern chemical engineering processes. We discussed the effects of the interfaceinduced hydrogen bond networks of water molecules, the ionic hydration of ionic aqueous solutions, and the spatial distributions of alcohol and alcohol–water mixtures on flow resistance on the basis of the distinctive characteristics of different fluid systems. 展开更多
关键词 Process INTENSIFICATION Nanoconfined FLUID Interface Complex fluids micro structure MOLECULAR SIMULATION
下载PDF
Preparation of micro/nano-structured ceramic coatings on Ti6Al4V alloy by plasma electrolytic oxidation process 被引量:9
13
作者 Da-jun ZHAI Ke-qin FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2546-2555,共10页
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce... In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF. 展开更多
关键词 plasma electrolytic oxidation Ti6Al4V alloy micro/nano structure NAF surface modification
下载PDF
Dropwise condensation heat transfer enhancement on surfaces micro/nano structured by a two-step electrodeposition process 被引量:3
14
作者 Hamid Reza TALESH BAHRAMI Alireza AZIZI Hamid SAFFARI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1065-1076,共12页
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe... Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time. 展开更多
关键词 dropwise condensation heat transfer ELECTRODEPOSITION micro/nano structure POROSITY
下载PDF
Fluid-Dynamics Analysis and Structural Optimization of a 300 kW MicroGas Turbine Recuperator
15
作者 Weiting Jiang Tingni He +2 位作者 Chongyang Wang Weiguo Pan Jiang Liu 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1447-1461,共15页
Computational Fluid Dynamics(CFD)is used here to reduce pressure loss and improve heat exchange efficiency in the recuperator associated with a gas turbine.First,numerical simulations of the high-temperature and lowte... Computational Fluid Dynamics(CFD)is used here to reduce pressure loss and improve heat exchange efficiency in the recuperator associated with a gas turbine.First,numerical simulations of the high-temperature and lowtemperature channels are performed and,the calculated results are compared with experimental data(to verify the reliability of the numerical method).Second,the flow field structure of the low-temperature side channel is critically analyzed,leading to the conclusion that the flow velocity distribution in the low-temperature side channel is uneven,and its resistance is significantly higher than that in the high-temperature side.Therefore,five alternate structural schemes are proposed for the optimization of the low-temperature side.In particular,to reduce the flow velocity in the upper channel,the rib length of each channel at the inlet of the low-temperature side region is adjusted.The performances of the 5 schemes are compared,leading to the identification of the configuration able to guarantee a uniform flow rate and minimize the pressure drop.Finally,the heat transfer performance of the optimized recuperator structure is evaluated,and it is shown that the effectiveness of the recuperator is increased by 1.5%. 展开更多
关键词 micro gas turbine RECUPERATOR structural optimization numerical simulation
下载PDF
Hydrothermal Synthesis and Properties of Y-zeolite-containing Composite Material with Micro/mesoporous Structure 被引量:3
16
作者 Zhou Jihong Min Enze +3 位作者 Shu Xingtian Zong Baoning Yang Haiying Luo Yibin (State Key Laboratory of Catalytic Material and Reaction Engineering,Research Institute of Petroleum Processing,SINOPEC,Beijing 100083) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第1期1-4,共4页
A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods.... A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite. 展开更多
关键词 FAUJASITE hydrothermal synthesis Y-zeolite-containing composite material micro/mesoporous structure kaolin
下载PDF
Effect of quenching condition on micro inhomogeneous structure of Al-Fe-Ce amorphous alloy 被引量:1
17
作者 ZHANG Lin(张林) BIAN Xiu fang(边秀房) +1 位作者 WU You shi(吴佑实) LI Hui(李辉) 《中国有色金属学会会刊:英文版》 CSCD 2000年第3期414-417,共4页
The microstructures of liquid and amorphous Al 90 Fe 5Ce 5 alloys were studied by X ray diffraction (XRD), and the crystalline behavior of the amorphous alloy was also investigated by differential scanning calorimetry... The microstructures of liquid and amorphous Al 90 Fe 5Ce 5 alloys were studied by X ray diffraction (XRD), and the crystalline behavior of the amorphous alloy was also investigated by differential scanning calorimetry (DSC). The distinct pre peaks were found on the structure factors of the liquid and amorphous alloys. The quenching temperature affects the pre peak area, but does not affect its position. The reduction of quenching temperature decreases the crystallization temperature and the activation energy of the Al Fe Ce amorphous alloy. Quenched from 1 050 ℃, a novel structure with a fine dispersion of Al nanophase particles homogeneously distributed in the amorphous matrix was obtained. And the sensitivity of the Al Fe Ce amorphous alloy to the quenching temperature reflects the micro inhomogeneity of the melt. 展开更多
关键词 Al Fe CE amorphous alloys micro INHOMOGENEOUS structure QUENCHING temperature
下载PDF
Encryption/decryption and microtarget capturing by pH-driven Janus microstructures fabricated by the same femtosecond laser printing parameters 被引量:5
18
作者 Zhaoxin Lao Rui Sun +6 位作者 Dongdong Jin Zhongguo Ren Chen Xin Yachao Zhang Shaojun Jiang Yiyuan Zhang Li Zhang 《International Journal of Extreme Manufacturing》 EI 2021年第2期89-97,共9页
Several natural organism can change shape under external stimuli. These natural phenomena have inspired a vast amount of research on exploration and implementation of reconfigurable shape transformation. The Janus str... Several natural organism can change shape under external stimuli. These natural phenomena have inspired a vast amount of research on exploration and implementation of reconfigurable shape transformation. The Janus structure is a promising approach to achieve shape transformation based on its heterogeneous chemical or physical properties on opposite sides.However, the heterogeneity is generally realized by multi-step processing, different materials,and/or different processing parameters. Here, we present a simple and flexible method of producing p H-sensitive Janus microactuators from a single material, using the same laser printing parameters. These microactuators exhibit reversible structural deformations with large bending angles of ~31°and fast response(~0.2 s) by changing the p H value of the aqueous environment. Benefited from the high flexibility of the laser printing technique and the spatial arrangements, pillar heights, and bending directions of microactuators are readily controlled,enabling a variety of switchable ordered patterns and complex petal-like structures on flat surfaces and inside microchannels. Finally, we explore the potential applications of this method in information encryption/decryption and microtarget capturing. 展开更多
关键词 micro actuator smart material pH hydrogel Janus structure laser printing
下载PDF
光子晶体Micro LED微显示阵列加工及光学特性分析
19
作者 孟媛 肖秧 +4 位作者 冯晓雨 何龙振 张鹏喆 宁平凡 刘宏伟 《半导体技术》 CAS 北大核心 2024年第8期719-725,共7页
Micro LED器件具有高亮度、低功耗和高可靠性等优点,但Micro LED显示像素巨量转移和光提取效率低的问题为其应用带来挑战。开发了具有高转移效率和出光效率的单片64×64 Micro LED微显示阵列,提出了倒装型GaN基单片Micro LED微显示... Micro LED器件具有高亮度、低功耗和高可靠性等优点,但Micro LED显示像素巨量转移和光提取效率低的问题为其应用带来挑战。开发了具有高转移效率和出光效率的单片64×64 Micro LED微显示阵列,提出了倒装型GaN基单片Micro LED微显示阵列芯片和Si基驱动电路的设计方法及集成工艺。通过时域有限差分(FDTD)方法对Micro LED微显示阵列光学特性进行了建模分析,设计了一种提高Micro LED微显示阵列出光效率的光提取结构。结合仿真结果,开发了一种在Micro LED蓝宝石衬底表面制备光子晶体结构的聚焦离子束(FIB)微纳加工工艺,并进行了器件加工。测试结果表明,蓝宝石衬底上加工的光子晶体结构可以提高Micro LED器件的表面出光效率,光功率平均值提升了16.36%,对Micro LED微显示阵列加工及微显示像素光提取问题具有借鉴意义。 展开更多
关键词 micro LED 微显示阵列 光子晶体结构 聚焦离子束(FIB) 出光效率
下载PDF
Numerical Simulation of Macro-and Micro-structures of Intense Convective Clouds with a Spectral Bin Microphysics Model 被引量:4
20
作者 刘晓莉 牛生杰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第5期1078-1088,共11页
By use of a three-dimensional compressible non-hydrostatic convective cloud model with detailed microphysics featuring spectral bins of cloud condensation nuclei (CCN), liquid droplets, ice crystals, snow and graupe... By use of a three-dimensional compressible non-hydrostatic convective cloud model with detailed microphysics featuring spectral bins of cloud condensation nuclei (CCN), liquid droplets, ice crystals, snow and graupel particles, the spatial and temporal distributions of hydrometeors in a supercell observed by the (Severe Thunderstorm Electrification and Precipitation Study) STEPS triple-radar network are simulated and analyzed. The bin model is also employed to study the effect of CCN concentration on the evolution characteristics of the supercell. It is found that the CCN concentration not only affects the concentration and spectral distribution of water droplets, but also influences the characteristics of ice crystals and graupel particles. With a larger number of CCN, more water droplets and ice crystals are produced and the growth of graupel is restrained. With a small quantity of CCN the production of large size water droplets are promoted by initially small concentrations of water droplets and ice crystals, leading to earlier formation of small size graupel and restraining the recycling growth of graupel, and thus inhibiting the formation of large size graupel (or small size hail). It can be concluded that both the macroscopic airflow and microphysical processes influence the formation and growth of large size graupel (or small size hail). In regions with heavy pollution, a high concentration of CCN may restrain the formation of graupel and hail, and in extremely clean regions, excessively low concentrations of CCN may also limit the formation of large size graupel (hail). 展开更多
关键词 spectral bin microphysics macro-micro structures concentration of CCN
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部