期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Micro segment analysis of supercritical methane thermal-hydraulic performance and pseudo-boiling in a PCHE straight channel 被引量:1
1
作者 Qian Li Zi-Jie Lin +3 位作者 Liu Yang Yue Wang Yue Li Wei-Hua Cai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1275-1289,共15页
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the... The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE. 展开更多
关键词 Printed circuit heat exchanger Vaporization Supercritical methane Pseudo-boiling micro segment analysis
下载PDF
The effect of nozzle layout on droplet ejection of a piezo-electrically actuated micro-atomizer 被引量:2
2
作者 Yanying Feng Zhaoying Zhou +1 位作者 Junhua Zhu Guibin Du 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第2期163-172,共10页
We study here effects of nozzle layout on the droplet ejection of a micro atomizer, which was fabricated with the arrayed nozzles by the MEMS technology and actuated by a piezoelectric disc. A theoretical model was fi... We study here effects of nozzle layout on the droplet ejection of a micro atomizer, which was fabricated with the arrayed nozzles by the MEMS technology and actuated by a piezoelectric disc. A theoretical model was first built for this piezoelectric-liquid-structure coupling system to characterize the acoustic wave propagation in the liquid chamber, which determined the droplet formation out of nozzles. The modal analysis was carried out numerically to predict resonant frequencies and simulate the corresponding pressure wave field. By comparing the amplitude contours of pressure wave on the liquid-solid interface at nozzle inlets with the designed nozzle layout, behaviors of the device under different vibration modes can be predicted. Experimentally, an impedance analyzer was used to measure the resonant frequencies of the system. Three types of atomizers with different nozzle layouts were fabricated for measuring the effect of nozzle distribution on the ejection performance. The visualization experiment of droplet generation was carried out and volume flow rates of these devices were measured. The good agreement between the experiment and the prediction proved that only the increase of nozzles may not enhance the droplet generation and a design of nozzle distribution from a view-point of frequency is necessary for a resonant related atomizer. 展开更多
关键词 Nozzle layout . Fluid-solid coupling . Modal analysis . micro atomizer . MEMS
下载PDF
Fluidic Control System Employing Micropump and Microvalves for Cell Isolation
3
作者 张坚 荆高山 +2 位作者 许俊泉 程京 周玉祥 《Tsinghua Science and Technology》 SCIE EI CAS 2001年第3期277-280,284,共5页
A micro fluidic system was developed and used for cell isolation on biochips. The flow speed could be precisely adjusted by a micropump, and the flow direction could be controlled by switching valves. The complete ope... A micro fluidic system was developed and used for cell isolation on biochips. The flow speed could be precisely adjusted by a micropump, and the flow direction could be controlled by switching valves. The complete operation was computer controlled. The control system for the micropump and microvalves is discussed here. This control system can be combined with other biochip devices to construct a micro total analysis system (μTAS). 展开更多
关键词 microFLUIDICS microPUMP microVALVE micro total analysis system (μTAS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部