期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy 被引量:6
1
作者 Xianghua Song Jianhong Lu +2 位作者 Xijiang Yin Jianping Jiang Jing Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第4期318-322,共5页
Micro arc oxidation(MAO)coatings were formed on magnesium alloy AZ31B to improve the corrosion resistance using environmental friendly electrolyte solution under single-polar pulse power supply.The effect of electrica... Micro arc oxidation(MAO)coatings were formed on magnesium alloy AZ31B to improve the corrosion resistance using environmental friendly electrolyte solution under single-polar pulse power supply.The effect of electrical parameters of pulse frequency on the coating performance was studied at frequencies of 2.5 Hz,25 Hz and 250 Hz.The coating performance at different frequencies was characterized by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS)and potentiodynamic polarization testing method.It was found that the corrosion resistance of the MAO coatings was improved when increasing the pulse frequencies from 2.5 Hz to 250 Hz.The corrosion current in 250 Hz case decreased by three orders of magnitude as compared with bare Mg alloy and the corrosion impedance also increased remarkably,means significantly enhanced corrosion resistance than bare Mg alloy.The results give us more insight in the optimization of electrical parameters to improve the MAO coating performance.The MAO technology is attractive for application on magnesium and other light alloys for surface protection in automotive and space industries. 展开更多
关键词 micro arc oxidation Magnesium alloys Pulse frequency Corrosion resistance Potentiodynamic polarization
下载PDF
Microstructure and Properties of Graphene Oxide-doped TiO_2 Coating on Titanium by Micro Arc Oxidation 被引量:2
2
作者 高羽 杨巍 +2 位作者 XU Dapeng CHEN Jian JIANG Bailing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1524-1529,共6页
Micro arc oxidation(MAO) coatings doped with graphene oxide(GO) were prepared on pure titanium by adding GO and sodium dodecyl benzene sulfonate(SDBS) into a sodium silicate solution. The as-deposited coatings were co... Micro arc oxidation(MAO) coatings doped with graphene oxide(GO) were prepared on pure titanium by adding GO and sodium dodecyl benzene sulfonate(SDBS) into a sodium silicate solution. The as-deposited coatings were comparatively analyzed by scanning electron microscopy(SEM), energydispersive X-ray spectroscopy(EDS) and X-ray diffraction(XRD). The binding forces of the MAO, MAO+GO and MAO+GO+SDBS three coatings were measured by a scratch tester. The mechanical property of the three coatings was analyzed using the nano-indentation technique. The corrosion resistance of the coatings was tested by the electrochemical system in 3.5% NaCl solution. The photocatalytic activity of the prepared samples was evaluated by determining the degradation of methylene blue(MB) solution. The results showed that compared to the MAO coating, the morphologies and phase compositions of MAO+GO and MAO+GO+SDBS composite coatings were significantly different. These two composite coatings all had superior photocatalytic activity. Especially, the MAO+GO composite coating still had enhanced binding force and excellent corrosion resistance. Furthermore, the relationship between the microstructure and the properties of these three MAO coatings was analyzed. 展开更多
关键词 pure titanium micro arc oxidation graphene oxide microstructure properties
下载PDF
Catalytic technology for water treatment by micro arc oxidation on Ti-AI alloy
3
作者 严志宇 王鑫 +2 位作者 孙冰 文密 韩月 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第3期83-87,共5页
The feasibility of the formation of a liquid plasma catalysis system through micro arc oxidation(MAO) under AC power with titanium-aluminum alloy electrodes was investigated.In the decolorization of organic dyeing w... The feasibility of the formation of a liquid plasma catalysis system through micro arc oxidation(MAO) under AC power with titanium-aluminum alloy electrodes was investigated.In the decolorization of organic dyeing wastewater simulated with Rhodamine B,Ti-Al alloy electrodes were superior over Ti electrodes and Al electrodes.The optimal molar percentage of Ti in alloy electrodes was 70%and the optimal decolorization rate was up to 88.9%if the additive suitable for Al was added into the solution to be treated.The decolorization rates were the same in the case of the alloy-alloy electrodes and alloy-Al electrodes.The proportion of the effects of plasma,TiO2 catalyzer during MAO and H2O2 after MAO in decolorization has been obtained.With the catalysis of TiO2 formed on the electrodes,the reaction rate was improved by a maximum of 95%and the decolorization rate was improved by a maximum of 71.6%.Based on the spectral analysis,the plasma catalysis mechanism has been studied. 展开更多
关键词 micro arc oxidation plasma catalysis Ti-Al alloy electrodes AC voltage decolorization of Rhodamine B
下载PDF
The effect of applied voltages on the structure,apatite-inducing ability and antibacterial ability of micro arc oxidation coating formed on titanium surface 被引量:6
4
作者 Qing Du Daqing Wei +4 位作者 Yaming Wang Su Cheng Shang Liu Yu Zhou Dechang Jia 《Bioactive Materials》 SCIE 2018年第4期426-433,共8页
The micro arc oxidation(MAO)coatings with different concentrations of Ca,P and Zn elements are successfully formed on the titanium substrate at the different applied voltages.After MAO treatment,the MAO coating exhibi... The micro arc oxidation(MAO)coatings with different concentrations of Ca,P and Zn elements are successfully formed on the titanium substrate at the different applied voltages.After MAO treatment,the MAO coating exhibits the porous surface structure and composed of anatase and rutile TiO2 phases.Meanwhile,the average size and density of micro-pores on the MAO coatings have been modified via the adjusting the applied voltages.In addition,the contents of the incorporated elements such as Zn,Ca and P elements in the MAO coatings have been optimized.The bonding strength test results reveal that the MAO coating shows higher bonding strength,which is up to 45±5 MPa.Compared to the pure Ti plate,the MAO coating formed at 350 and 400 V show good apatite-inducing ability.Meanwhile,the MAO coating containing Zn,Ca and P elements have better antibacterial ability for E.coli and S.aureus.Thus,the incorporation of Zn,Ca and P elements was an effective method to improve the antibacterial ability.Moreover,the concentrations of Zn,Ca and P elements could be adjusted with the changing of the applied voltages.As a result,the enhancement of the antibacterial ability on the MAO coating surfaces was depended on the comprehensive effect of the incorporated elements and the surface property of MAO coatings. 展开更多
关键词 micro arc oxidation Zn element Applied voltage Apatite-inducing ability Antibacterial ability
原文传递
The effect of sodium silicate concentration on microstructure and corrosion properties of MAO-coated magnesium alloy AZ31 in simulated body fluid 被引量:14
5
作者 B.Salami A.Afshar A.Mazaheri 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第1期72-77,共6页
In recent years,magnesium and its alloys are considered as biodegradable implants.However magnesium implants may rapidly corrode before the natural healing process of the tissue is completed.In this investigation,micr... In recent years,magnesium and its alloys are considered as biodegradable implants.However magnesium implants may rapidly corrode before the natural healing process of the tissue is completed.In this investigation,micro arc oxidation process has been studied for avoiding primary corrosion of the magnesium alloy in simulated body fluid.Anodized coating was formed on AZ31 alloy in nontoxic silicate-alkaline solution at constant current.The effects of silicate concentration and conductivity of electrolyte solution on microstructure and corrosion properties of coating were evaluated.Scanning electron microscopy showed that a thick and condensed coating is formed after enough anodizing period.Energy dispersive spectroscopy showed that Si,O and Mg are the main components of the coating.Corrosion resistance of the coated and uncoated samples was assessed using potentiodynamic polarization and electrochemical impedance spectroscopy tests in SBF at 37℃ and pH of 7.4.Maximum corrosion resistance was achieved at 30 g/L concentration of sodium silicate in anodizing solution.It was observed that further increase in silicate concentration decreased the corrosion resistance. 展开更多
关键词 Magnesium alloy micro arc oxidation Sodium silicate CONDUCTIVITY Corrosion properties
下载PDF
Microstructure and Tribological Behavior of a TiO_2/hBN Composite Ceramic Coating Formed via Micro-arc Oxidation of Ti–6Al–4V Alloy 被引量:19
6
作者 Ni Ao Daoxin Liu +3 位作者 Shuaixing Wang Qing Zhao Xiaohua Zhang Mengmeng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第10期1071-1076,共6页
A composite coating containing hexagonal boron nitride(hBN) particles and titanium oxide(TiO_2) was formed on the surface of Ti-6Al-4V alloy via micro-arc oxidation(MAO). The effect of quantity of the hBN-partic... A composite coating containing hexagonal boron nitride(hBN) particles and titanium oxide(TiO_2) was formed on the surface of Ti-6Al-4V alloy via micro-arc oxidation(MAO). The effect of quantity of the hBN-particles added into electrolyte on microstructure, composition, and wear behavior of the resulting composite coatings was investigated. Microstructure, phase composition, and tribological behavior of the resulting MAO coatings were evaluated via scanning electron microscopy, X-ray diffraction, and ball-on-disc abrasive tests. The results reveal that the TiO_2/hBN composite coating consisting of rutile TiO_2, anatase TiO_2, and an hBN phase was less porous than particle-free coating. Furthermore, the presence of hBN particles in the MAO coating produced an improved anti-friction property. The composite coating produced in the electrolyte containing 2 g/L of hBN particles exhibited the best wear resistance.The outer loose layer of the MAO coatings was removed by a mechanical polishing process, which led to a significant improvement in the wear resistance and anti-friction properties of the MAO coatings and highlighted an essential lubricating role of hBN particles in the composite coatings. However, wear mechanism of the MAO coatings was not relevant to the presence of hBN particles, where fatigue wear dominated the anti-fraction properties of the MAO coatings with and without hBN particles. 展开更多
关键词 Ti-6Al-4V alloy micro arc oxidation hBN particle Wear
原文传递
Modification of the Micro Arc-oxidized Ti Surface for Implant Applications
7
作者 Eren Yılmaz 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1391-1399,共9页
Surface treatments applied to titanium and its alloys for implant applications are important for the development of bio properties.In this study,first an oxide layer was formed on the surface of the titanium plate by ... Surface treatments applied to titanium and its alloys for implant applications are important for the development of bio properties.In this study,first an oxide layer was formed on the surface of the titanium plate by micro arc oxidation,and then both calcium phosphate and calcium phosphate/chitosan accumulation were performed for different samples by the sol-gel method.FE-SEM/EDS examinations,XRD,FTIR and thermal analysis were performed for these micro arc-oxidized,calcium phosphate-coated and calcium phosphate/chitosan-coated surfaces.The surface roughnesses for these surfaces were measured between 10μm and 100μm,suitable for bone development on the surface.The effect of chitosan addition on the calcium phosphate-coated surface on apatite formation ability and antibacterial properties was investigated.Although the addition of chitosan slows down the formation of apatite,it ensured that the coating had antibacterial properties.The calcium phosphate/chitosan biocomposite obtained can be recommended for dental and orthopedic implants. 展开更多
关键词 micro arc oxidation SOL-GEL HYDROXYAPATITE CHITOSAN IMPLANT
原文传递
Microstructure and Tribological Behavior of Self-lubricating(Si:N)-DLC/MAO Coatings on AZ80 Magnesium Substrate 被引量:2
8
作者 Wei YANG Zhennan DENG +2 位作者 Dong ZHANG Peiling KE Aiying WANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第6期693-698,共6页
The combined micro arc oxidation (MAO) and a hybrid beam deposition process was used to deposit duplex (Si:N)-DLC/MAO coatings on AZ80 magnesium alloy. The microstructure and composition of the duplex coatings we... The combined micro arc oxidation (MAO) and a hybrid beam deposition process was used to deposit duplex (Si:N)-DLC/MAO coatings on AZ80 magnesium alloy. The microstructure and composition of the duplex coatings were analyzed by Raman spectroscopy, X-ray photoelectron spectroscope (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). Tribological behaviors of the coatings were studied by ball-on-disk friction test. It was found that the ID/IG ratio of the (Si:N)-DLC (diamond-like carbon) top films increases with decreasing C2H2/N2 ratio. The (Si:N)-DLC top film with SigN4 was formed on the MAO coated sample as the C2H2/N2 ratio was 10sccm:5sccm, which showed an increasing critical load compared with the pure DLC directly deposited on the Mg alloy substrate. As a result, the (Si:N)-DLC/MAO coating exhibited an advanced wear protection for the substrate. 展开更多
关键词 Mg alloy micro arc oxidation DLC Coating microSTRUCTURE Tribologicalbehavior
原文传递
In vitro degradation of MAO/PLA coating on Mg-1.21Li-1.12Ca-1.0Y alloy 被引量:7
9
作者 Rong-Chang ZENG Wei-Chen QI +3 位作者 Ying-Wei SONG Qin-Kun HE Hong-Zhi CUI En-Hou HAN 《Frontiers of Materials Science》 SCIE CSCD 2014年第4期343-353,共11页
Magnesium and its alloys are promising biomaterials due to their biocompatibility and osteoinduction. The plasticity and corrosion resistance of commercial magnesium alloys cannot meet the requirements for degradable ... Magnesium and its alloys are promising biomaterials due to their biocompatibility and osteoinduction. The plasticity and corrosion resistance of commercial magnesium alloys cannot meet the requirements for degradable biomaterials completely at present. Particularly, the alkalinity in the microenvironment surrounding the degradation, implants, resulting from the arises a major concern. Micro arc oxidation (MAO) and poly(lactic acid) (PLA) composite (MAO/PLA)coating on biomedical Mg- 1.21Li-1.12Ca-1.0Y alloy was prepared to manipulate pH variation in an appropriate range. Surface morphologies were discerned using SEM EMPA. AM corrosion resistance was evaluated via electrochemical Polarization and impedance and hydrogen volumetric method. The results demonstrated that the MAO coating predomlnantly consisted of MgO, Mg2SiO4 and YzO3. The composite coating markedly improved the corrosion resistance of the alloy. The rise in solution pH for the MAO/PLA coating was tailored to a favorable range of 7.5-7.8 The neutrallzation caused by the alkalinity of MAO and Mg substrate and acidification of PLA was probed. The reSult designates that MAOI PLA composite coating on Mg-1.21Li-1.12Ca-1.0Y alloys may be a promising biomedical coating. 展开更多
关键词 magnesium alloy micro.arc oxidation (MAO) poly(lactic acid)(PLA) biomaterial degradation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部