期刊文献+
共找到1,416篇文章
< 1 2 71 >
每页显示 20 50 100
Influence of tool deflection on micro channel pattern of 6:4 brass with rectangular tool 被引量:1
1
作者 Tae-Jin JE Kang-Won LEE +4 位作者 Sang-Cheon PARK Jae-Gu KIM Doo-Sun CHOI Kyoung-Taik PARK Kyung-Hyun WHANG 《中国有色金属学会会刊:英文版》 CSCD 2009年第B09期164-170,共7页
Machining experiment of micro channel structure with 6:4 brass was carried out by shaping process using a single crystal diamond tool. FEM simulation using solid cantilever beam model was analyzed. In result of experi... Machining experiment of micro channel structure with 6:4 brass was carried out by shaping process using a single crystal diamond tool. FEM simulation using solid cantilever beam model was analyzed. In result of experiment, tool deflection is observed as machining characteristics through result of experiments such as surface roughness, cutting force and burr formations. And the influence of tool deflection is experimentally proved. 展开更多
关键词 金刚石工具 挠度 通道模式 黄铜 矩形 实验证明 加工特性 有限元模拟
下载PDF
Magnetic Field Effect and Heat Transfer of Nanofluids within Waveform Microchannel
2
作者 Mehdi Moslemi Motahare Mahmoodnezhad +2 位作者 S.A.Edalatpanah Sulima Ahmed Mohammed Zubair Hamiden Abd El-Wahed Khalifa 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1957-1973,共17页
In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a ... In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a flat surface is employed.A cubic spline collocation numerical method is employed to analyze transformed equations.The effect of various parameters such as Reynolds number,volume fraction 0-,Hartmann number,and amplitude of wave length was evaluated in improving the performance of a wavy microchannel.According to the presented results,the sinusoidal shape of the microchannel has a direct impact on heat transfer.By increasing the microchannel wave amplitude,the Nusselt number has risen.On the other hand,increasing the heat transfer in the higher wavelength ratio corrugated channel is seen as an effective method of increasing the heat transfer,especially at higher Reynolds numbers.The results showed that with increasing Hartmann numbers,the flow line near thewall becomesmore regular and,according to the temperature gradient created,theNusselt number growth. 展开更多
关键词 Heat transfer magnetic field nano fluid VORTICITY wavy micro channel
下载PDF
Improved catalytic performance of Ni catalysts for steam methane reforming in a micro-channel reactor 被引量:4
3
作者 Bozhao Chu Nian Zhang +2 位作者 Xuli Zhai Xin Chen Yi Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第5期593-600,共8页
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attenti... Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction. 展开更多
关键词 hydrogen production steam methane reforming (SMR) nickel-based catalysts MgO promoter millisecond reaction micro-channel reactor
下载PDF
Scaling of the bubble/slug length of Taylor flow in a meandering microchannel 被引量:2
4
作者 Qianqing Liang Xuehu Ma +4 位作者 KaiWang Jiang Chun Zhong Lan TingtingHao Yaxiong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第11期2615-2625,共11页
In order to reduce or avoid the fluctuations from interface breakup, a meandering microchannel with curved multi-bends(44 turns) is fabricated, and investigations of scaling bubble/slug length in Taylor flow in a rect... In order to reduce or avoid the fluctuations from interface breakup, a meandering microchannel with curved multi-bends(44 turns) is fabricated, and investigations of scaling bubble/slug length in Taylor flow in a rectangular meandering microchannel are systematically conducted. Based on considerable experimental data,quantitative analyses for the influences of two important characteristic times, liquid phase physical properties and aspect ratio are made on the prediction criteria for the bubble/slug length of Taylor flow in a meandering microchannel. A simple principle is suggested to predict the bubble formation period by using the information of Rayleigh time and capillary time for six gas–liquid systems with average deviation of 10.96%. Considering physical properties of the liquid phase and cross-section configuration of the rectangular mcirochannel,revised scaling laws for bubble length are established by introducing Ca, We, Re and W/h whether for the squeezing-driven or shearing-driven of bubble break. In addition, a simple principle in terms of Garstecki-type model and bubble formation period is set-up to predict slug lengths. A total of 107 sets of experimental data are correlated with the meandering microchannel and operating range: 0.001 b CaTPb 0.05, 0.06 b WeTPb 9.0,18 b ReTPb 460 using the bubble/slug length prediction equation from current work. The average deviation between the correlated data and the experimental data for bubble length and slug length is about 9.42% and9.95%, respectively. 展开更多
关键词 MEANDERING rectangular micro-channel T-JUNCTION Fluid properties BUBBLE breakup mode Bubble/slug LENGTH
下载PDF
NUMERICAL ANALYSIS OF GASEOUS FLOW IN MICRO-CHANNELS 被引量:1
5
作者 XuJie GuChuangang WangTong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第4期575-578,共4页
The algorithm of gaseous flow in bi-dimensional micro-channels is set up andthe corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels isnumerically analyzed and the pressure dro... The algorithm of gaseous flow in bi-dimensional micro-channels is set up andthe corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels isnumerically analyzed and the pressure drop along the duct as well .as the velocity profile in themicro-channels is obtained. The numerical results agreed well with the experimental results in thereferences. Moreover, the effects of Kn, sigma_v and Re on the velocity profiles are analyzed. It isfound that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundaryincreases; the tangential momentum coefficient sigma_v affects the slip velocity greatly. The slipvelocity increases with decreasing a, In the slip flow regime and for low Re numbers, the slipvelocity is little influenced by the Re number. 展开更多
关键词 micro-channel Numerical analysis KN SLIP
下载PDF
RESEARCH ON DIFFUSION IN MICRO-CHANNEL FLOW DRIVEN BY ELECTROOSMOSIS 被引量:1
6
作者 张凯 林建忠 李志华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第5期575-582,共8页
Numerical simulation using the finite differential method was carried out to analyze the diffusion of an impulse sample in the micro-channel driven by electroosmosis. The results show that the electrical field strengt... Numerical simulation using the finite differential method was carried out to analyze the diffusion of an impulse sample in the micro-channel driven by electroosmosis. The results show that the electrical field strength applied externally and the concentration of buffer solution play a significant role in the diffusion of sample, however, hydraulic diameter and aspect ratio of height to width of channel play a small role in it. Weakening the electrical field strength applied externally and the concentration of buffer solution properly can prevent the sample band from broadening effectively, and promote the efficiency of testing and separation as well as keep a faster speed of transport. The conclusions are helpful to the optimal design for micro-channel. 展开更多
关键词 micro-channel DIFFUSION driven by electroosmosis numerical simulation
下载PDF
Reversal current observed in micro-and submicro-channel flow under non-continuous DC electric field
7
作者 段一飞 马宏伟 +7 位作者 高泽阳 王凯歌 赵伟 孙聃 王归仁 李俊杰 白晋涛 顾长志 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期481-490,共10页
In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the move... In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips. 展开更多
关键词 micro/nano-fluidic channel reversed-current phenomenon critical voltage steady current over-potential electric double layer
下载PDF
Flow characteristics of supersonic gas passing through a circular micro-channel under different inflow conditions
8
作者 Guang-Ming Guo Qin Luo +1 位作者 Lin Zhu Yi-Xiang Bian 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第6期270-283,共14页
Gas flow in a micro-channel usually has a high Knudsen number. The predominant predictive tool for such a microflow is the direct simulation Monte Carlo(DSMC) method, which is used in this paper to investigate primary... Gas flow in a micro-channel usually has a high Knudsen number. The predominant predictive tool for such a microflow is the direct simulation Monte Carlo(DSMC) method, which is used in this paper to investigate primary flow properties of supersonic gas in a circular micro-channel for different inflow conditions, such as free stream at different altitudes, with different incoming Mach numbers, and with different angles of attack. Simulation results indicate that the altitude and free stream incoming Mach number have a significant effect on the whole micro-channel flow field, whereas the angle of attack mainly affects the entrance part of micro-channel flow field. The fundamental mechanism behind the simulation results is also presented. With the increase of altitude, thr free stream would be partly prevented from entering into micro-channel.Meanwhile, the gas flow in micro-channel is decelerated, and the increase in the angle of attack also decelerates the gas flow. In contrast, gas flow in micro-channel is accelerated as free stream incoming Mach number increases. A noteworthy finding is that the rarefaction effects can become very dominant when the free stream incoming Mach number is low. In other words, a free stream with a larger incoming velocity is able to reduce the influence of the rarefaction effects on gas flow in the micro-channel. 展开更多
关键词 rarefied FLOW micro-channel mass FLOW VELOCITY temperature distribution
下载PDF
The Flow Behavior of Red Blood Cell Reduced Deformability in Microchannel
9
作者 Fen Li Rui Duan Hui Li 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期116-117,共2页
Blood cells are mainly(~99%)comprised of red blood cells.The most remarkable properties of are their high deformability,which allow they flow through microcapillaries of diameter even smaller than their size.The RBC’... Blood cells are mainly(~99%)comprised of red blood cells.The most remarkable properties of are their high deformability,which allow they flow through microcapillaries of diameter even smaller than their size.The RBC’s remarkable mechanical properties originate from the unique architecture of its membrane.To study the mechanism of RBC’s deformability,a commonly adopted approach is to localize the cytoskeleton protein by immunofluorescence,followed by exploring the changes of cytoskeleton protein during cell deformation.During this process,the fixed treatment of RBC using GA and PFA is of great importance.However,RBC’s deformability is reduced by the fixation process and skeletal protein of membrane is changed accordingly.The flow behavior of red RBCs through the microchannel also changed.Given the difficulty of observing RBC flow in vivo,in vitro simulation by virtue of microfluidic devices provides a feasible alternative.An important physiological phenomenon of the blood flow is the formation of cell free layer(CFL),with RBCs show a tendency to concentrate towards the central axis of the pipeline and move faster than the plasma layer.However,this phenomena is weaken if the stiffness of the membrane increase,which occurs in some disease,such as hereditary spherocytosis and hereditary elliptocytosis.To study the effects of GA and PFA fix treatment on RBC deformability,a microfluidic platform is employed to measuring the CFL and flow velocity of blood flow in this work.The PDMS micro flow channel used is 100 micrometers in width and 50 micrometers in deep.The RBC suspension is fed into the flow channel by the injection pump(NE-1000.USA),and the experiments are observed and recorded by the inverted microscope(IX70,Olympus,Japan)and high-speed camera(Memrecam GX-1,NAC,Japan)system.Three GA concentrations,i.e.,0.000 5,0.000 75,and 0.001 wt.%were used.Meanwhile,the effect of PFA at a concentration of 2wt.%work with GA was also investigated.Images of the flowing RBCs are processed mainly based on Memrecam GXLink.The results show that,the diameter of the RBC be treated is bigger and the shape of the RBC is became more flat after treated.Some of RBCs lost their biconcave structure.When the RBC suspension with 5%Hct flow in the microchannel,the CFL thickness decrease after being treated.And with concentrations of GA increase,the CFL thickness become thinner.The CFL thickness decrease significantly when GA and 2 wt.%PFA work combined.The velocity of RBCs decreases after treated with the GA or/and 2wt.%PFA.GA is known to relieve the dissolution of red blood cells during fluorescence labeling.On the other hand,the crosslinking of the aldehyde group(-cho)of GA with the amino group(-nh2)of RBC membrane protein will change the conformation of the membrane protein and its visco-elastic properties in turn.Then,the transparent fluidity orrheology characteristics of RBC is altered.Since GA and PFA are commonly used to immobilize red blood cells and keep the fluorescence constant,and PFA works similarly as GA,as a result,the variation of membrane protein conformation is intensified,and the membrane becomes stiffer. 展开更多
关键词 RED BLOOD CELL micro channel fixed treatment CELL free layer VELOCITY distribution
下载PDF
Research on a Manifold Micro-channel Heat Sink Applied in High Concentrated Solar Cells
10
作者 JU Xing LI Xin ZHANG Xiliang XU Li 《中国电机工程学报》 EI CSCD 北大核心 2013年第32期I0008-I0008,6,共1页
该文对歧管式微通道冷却技术在聚光电池冷却方面的应用进行了理论和实验研究。歧管式微通道冷却技术有助于在较小的空间内实现高热流密度冷却,较为适合高聚光比的密集阵列聚光电池系统。文中对歧管式微通道热沉热阻的计算方法进行改进... 该文对歧管式微通道冷却技术在聚光电池冷却方面的应用进行了理论和实验研究。歧管式微通道冷却技术有助于在较小的空间内实现高热流密度冷却,较为适合高聚光比的密集阵列聚光电池系统。文中对歧管式微通道热沉热阻的计算方法进行改进,建立该种结构完全基于半经验公式的一维传热模型,并分析影响总热阻的主要因素。同时,对电池-热沉系统进行实验。实验结果表明,在此范围内实验与计算结果具有良好的一致性,电池-热沉系统的整体热阻低于1×10-4 m2·℃/W。结合聚光电池的性能模型,可获得电池的最大输出功率、效率、温度等性能参数随聚光比的变化情况。 展开更多
关键词 太阳能电池 散热器 微通道 聚光 应用 流形 辐射通量 电池效率
下载PDF
Modelling two-layer nanofluid flow in a micro-channel with electro-osmotic effects by means of Buongiorno’s model
11
作者 M.D.K.NIAZI Hang XU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期83-104,共22页
A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Differe... A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Different from the previous studies on two-layer channel flow of a nanofluid,the present paper introduces the flux conservation conditions for the nanoparticle volume fraction field,which makes this work new and unique,and it is in coincidence with practical observations.The governing equations are reduced into a group of ordinary differential equations via appropriate similarity transformations.The highly accurate analytical approximations are obtained.Important physical quantities and total entropy generation are analyzed and discussed.A comparison is made to determine the significance of electrical double layer(EDL)effects in the presence of an external electric field.It is found that the Brownian diffusion,the thermophoresis diffusion,and the viscosity have significant effects on altering the flow behaviors. 展开更多
关键词 electrical double layer(EDL) entropy generation micro-channel NANOFLUID
下载PDF
Flowing simulation of injection molded parts with micro-channel
12
作者 崔志香 司军辉 +1 位作者 刘春太 申长雨 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第3期269-276,共8页
In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included i... In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included in the injection molding the macro-component with a micro-channel. In this case, a simplified model is used to analyze the flow behaviors of the macro-sized part within a micro-channel. The flow behaviors in the macro-cavity are estimated by using the finite element and finite difference methods. The influence of the injection rate, micro-channel size, heat transfer coefficient, and mold temperature on the flowing distance is investigated based on the non-isothermal analytic method. The results show that an increase in the radius of the micro-channel and mold temperature can improve effectively the flowing distance in the micro-channel. 展开更多
关键词 micro-injection molding flowing simulation micro-channel
下载PDF
Light propagation properties of two-dimensional photonic crystal channel filters with elliptical micro-cavities
13
作者 冯帅 王义全 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期262-266,共5页
Light propagation through a channel filter based on two-dimensional photonic crystals with elliptical-rod defects is studied by the finite-difference time-domain method. Shape alteration of the defects from the usual ... Light propagation through a channel filter based on two-dimensional photonic crystals with elliptical-rod defects is studied by the finite-difference time-domain method. Shape alteration of the defects from the usual circle to an ellipse offers a powerful approach to engineer the resonant frequency of channel filters. It is found that the resonant frequency can be flexibly adjusted by just changing the orientation angle of the elliptical defects. The sensitivity of the resonant wavelength to the alteration of the oval rods' shape is also studied. This kind of multi-channel filter is very suitable for systems requiring a large number of output channel filters. 展开更多
关键词 photonic crystal defect multi-channel filter micro-CAVITY
下载PDF
Flow Behaviour Analysis and Experimental Investigation for Emitter Micro-channels 被引量:12
14
作者 WEI Zhengying CAO Meng LIU Xia TANG Yiping LU Bingheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期729-737,共9页
The existing research of the flow behavior in emitter micro-channels mainly focuses on the single-phase flow behavior.And the recent micro-particle image velocimetry(PIV) experimental research on the flow characteri... The existing research of the flow behavior in emitter micro-channels mainly focuses on the single-phase flow behavior.And the recent micro-particle image velocimetry(PIV) experimental research on the flow characteristics in various micro-channels mainly focuses on the single-phase fluid flow.However,using an original-size emitter prototype to perform the experiments on the two-phase flow characteristics of the labyrinth channels is seldom reported.In this paper,the practical flow of water,mixed with sand escaped from filtering,in the labyrinth channel,is investigated.And some research work on the clogging mechanism of the labyrinth channel's structure is conducted.Computational fluid dynamics(CFD) analysis has been performed on liquid-solid two-phase flow in labyrinth-channel emitters.Based on flow visualization technology-micro-PIV,the flow in labyrinth channel has been photographed and recorded.The path line graph and velocity vector graph are obtained through the post-treatment of experimental results.The graphs agree well with CFD analysis results,so CFD analysis can be used in optimal design of labyrinth-channel emitters.And the optimized anti-clogging structures of the rectangular channel and zigzag channel have been designed here.The CFD numerical simulation and the micro-PIV experiments analysis on labyrinth-channel emitter,make the "black box" of the flow behavior in the emitter channel broken.Furthermore,the proposed research promotes an advanced method to evaluate the emitter's performance and can be used to conducting the optimal design of the labyrinth-channel emitters. 展开更多
关键词 drip irrigation emitter labyrinth channel two-phase flow analysis anti-clogging micro-PIV
下载PDF
自激振荡射流微通道换热特性及热力学分析
15
作者 陈巨辉 王俊乔 +5 位作者 李丹 王妍 曲久鹤 曹希峰 刘晓刚 李九如 《中国电机工程学报》 EI CSCD 北大核心 2024年第15期6078-6085,I0020,共9页
该文对自激振荡射流微通道内流体换热性能进行模拟研究,结果表明在不同入口质量流量(1.0~6.0 g/s)条件下,自激振荡器内高压区域的移动造成了微通道散热器内射流的偏转,形成射流周期性循环摆动的同时强化了流体区域的扰动。此外,经对比... 该文对自激振荡射流微通道内流体换热性能进行模拟研究,结果表明在不同入口质量流量(1.0~6.0 g/s)条件下,自激振荡器内高压区域的移动造成了微通道散热器内射流的偏转,形成射流周期性循环摆动的同时强化了流体区域的扰动。此外,经对比分析后发现相较射流微通道内流体区域其冲击范围更广,因此其均温性能也优于射流微通道。与此同时,该文运用热力学原理分析评价自激振荡技术对射流微通道内流体流动换热性能的影响,发现自激振荡器所产生的振荡射流可以减小射流微通道内流体对流换热过程中的不可逆损失,其热能传输效率高达到98.48%。 展开更多
关键词 射流微通道 自激振荡器 熵产 热能传输效率 强化换热
下载PDF
TA2纯钛薄板微流道液压成形工艺研究
16
作者 徐勇 高明宇 +2 位作者 解文龙 张士宏 苏宗辉 《汽车工程》 EI CSCD 北大核心 2024年第8期1511-1519,共9页
双极板是氢燃料电池的重要部件之一,钛作为金属双极板基材有诸多优势,但钛的成形性能差、回弹较为严重,本文以0.1 mm TA2纯钛薄板微流道液压成形为研究对象,通过试验和有限元模拟相结合的方法研究纯钛微结构变形行为,分析工艺参数对微... 双极板是氢燃料电池的重要部件之一,钛作为金属双极板基材有诸多优势,但钛的成形性能差、回弹较为严重,本文以0.1 mm TA2纯钛薄板微流道液压成形为研究对象,通过试验和有限元模拟相结合的方法研究纯钛微结构变形行为,分析工艺参数对微流道成形质量的影响规律,为液压成形钛双极板提供参考。建立了TA2纯钛薄板微流道液压成形的有限元模型,通过与试验件的轮廓及厚度分布验证有限元模型的准确性;研究了液体压力、加载速率和脉动加载对微流道成形的影响。结果表明,微流道液压成形过程中材料应变路径为平面应变,且上圆角位置最容易破裂;加载速率对微流道成形影响不大,随着加载速率的提高,成形深度略有下降,但是变化不大,仅有3%;脉动加载路径能够提高材料的流动变形能力,在均为临界破裂情况下,相比较线性加载路径成形深度有较高的提高,可达232.2μm,提高幅度为23%。 展开更多
关键词 TA2 微流道 液压成形 脉动加载
下载PDF
微通道内超临界LNG变物性流动传热数值模拟
17
作者 沈妍 耿伟轩 +1 位作者 许啸 刘锐 《低温工程》 CAS CSCD 北大核心 2024年第5期49-56,共8页
跨临界LNG在临界点附近物性变化剧烈,采用数值模拟方法研究了直通道和Zigzag型微通道内超临界LNG变物性和常物性对流动传热性能,分析了LNG跨临界变物性和常物性的偏差。研究结果表明,在Re为9 816、16 956、24 164和31 390时,直通道定物... 跨临界LNG在临界点附近物性变化剧烈,采用数值模拟方法研究了直通道和Zigzag型微通道内超临界LNG变物性和常物性对流动传热性能,分析了LNG跨临界变物性和常物性的偏差。研究结果表明,在Re为9 816、16 956、24 164和31 390时,直通道定物性和变物性的对流传热系数偏差为1.95%、-3.37%、-6.48%和-9.11%。Zigzag通道的变物性和定物性对流传热系数偏差为-0.11%、-5.47%、-7.84%和-5.83%。Zigzag对流传热系数按节距周期性变化。靠近半圆角位置涡的增大对传热有良好的强化作用。在直通道和Zigzag通道中,变物性的压降比定物性更小,但摩擦因子f比定物性更大。在Zigzag通道中物性对摩擦因子f的影响可以忽略。 展开更多
关键词 微通道 超临界流体 数值模拟 Zigzag通道 变物性
下载PDF
逆流相分离结构微细通道流动沸腾传热与均温性
18
作者 罗小平 侯云天 范一杰 《化工学报》 EI CSCD 北大核心 2024年第7期2474-2485,共12页
为探究不同相分离结构参数对强化微细通道流动沸腾传热性能和均温性的影响,加工制作了带有不同相分离结构的平行逆流微细通道试验段,分别为相分离结构(PSS)位置不同的PSS-1(上下游均匀分布)、PSS-2(上下游靠近中部)和PSS-3(上下游靠近两... 为探究不同相分离结构参数对强化微细通道流动沸腾传热性能和均温性的影响,加工制作了带有不同相分离结构的平行逆流微细通道试验段,分别为相分离结构(PSS)位置不同的PSS-1(上下游均匀分布)、PSS-2(上下游靠近中部)和PSS-3(上下游靠近两端),其中PSS-1分为A、B、C三种,分别对应4孔、6孔、10孔。以乙醇为试验工质,在有效热通量为17.12~87.25 kW/m^(2)、入口温度为70℃、质量流速为86.11 kg(/m^(2)·s)的工况下,对截面为2 mm×2 mm的矩形微细通道开展流动沸腾试验,并利用高速摄影仪对通道进行可视化研究,通过引入传热强化因子和壁面温度标准差研究了不同相分离结构对强化微细通道传热性能和均温性的影响以及相分离结构在高压通道和低压通道内的强化机制。研究表明,传热强化效果随相分离排气孔数增加而提升,相分离结构位置对传热特性的影响在高压通道和低压通道内有所不同。PSS-1-C微细通道的温度均匀性最好,在热通量为83.11 kW/m^(2)时微细通道平均壁面温度较无相分离相同通道降低了1.9℃,温度标准差降低了14.2%。可视化图像表明,相分离结构在压差作用下能实现气相转移,进而强化传热。 展开更多
关键词 微细通道 相分离结构 逆流 流动沸腾 传热 两相流 均温性
下载PDF
带人字槽和轴向微通槽的动静压气体轴承静态特性
19
作者 李树森 马添潇 穆岩璞 《润滑与密封》 CAS CSCD 北大核心 2024年第3期35-40,共6页
设计带人字槽和轴向微通槽的动静压气体轴承,运用FLUENT对其静态特性进行仿真分析,通过改变轴向微通槽深度、偏心率、气膜厚度、供气压力等参数,研究其对轴承刚度和承载能力的影响。结果表明:其他条件不变,偏心率越大,轴承刚度越小、承... 设计带人字槽和轴向微通槽的动静压气体轴承,运用FLUENT对其静态特性进行仿真分析,通过改变轴向微通槽深度、偏心率、气膜厚度、供气压力等参数,研究其对轴承刚度和承载能力的影响。结果表明:其他条件不变,偏心率越大,轴承刚度越小、承载能力越大;人字槽可以提升气体轴承的承载能力和刚度,主轴转速越快,动压效应越强,轴承刚度和承载能力越大;随微通槽深度增加,轴承刚度先增大后保持稳定,轴承承载能力先增大后减小,因此当微通槽深度过大时,轴承刚度变化不大,但轴承承载能力会减小。 展开更多
关键词 动静压气体轴承 人字槽 轴向微通槽 静态特性
下载PDF
微小通道内超临界R134a流动传热特性
20
作者 张巧玲 马祖浩 +4 位作者 于子元 刘梓俊 黄铋匀 杨振东 马浩然 《化工进展》 EI CAS CSCD 北大核心 2024年第4期1667-1675,共9页
超临界有机朗肯循环(supercritical organic Rankine cycle,SORC)是回收中低品位能源较理想的新型动力循环技术之一,而超临界有机工质的传热特性严重影响了系统能效,目前已成为制约有机朗肯循环技术向前发展的瓶颈。基于此,本文实验研... 超临界有机朗肯循环(supercritical organic Rankine cycle,SORC)是回收中低品位能源较理想的新型动力循环技术之一,而超临界有机工质的传热特性严重影响了系统能效,目前已成为制约有机朗肯循环技术向前发展的瓶颈。基于此,本文实验研究了超临界R134a在2mm微小通道内的流动传热特性,参数范围为:热流密度60~120kW/(m^(2)·s),质量流速800~3000kg/(m^(2)·s),压力4.1~5.1MPa,工质进口温度20~100℃,探讨了热流密度、质量流速、压力、流体焓值等参数对传热特性的影响规律。结果表明,传热系数随流体温度的升高先增加后减小,随质量流速的增加而增加,随着热流密度和压力的增加而减小。流体焓值在拟临界值附近出现压降平缓区。根据实验数据拟合得到了微通道内R134a的传热关联式,该关联式预测误差均在±10%之内,具有良好的预测精度。 展开更多
关键词 微小通道 超临界R134a 流动传热 有机朗肯循环 传热关联式
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部