The cladding preparation technology for the micro contact profile is investigated through the way of seam welding. The effects of the seam welding on different conditions including welding electrical current, welding ...The cladding preparation technology for the micro contact profile is investigated through the way of seam welding. The effects of the seam welding on different conditions including welding electrical current, welding time, electrode force and electrode material were contrasted through the way of metallographic structure, electron scanning, experiments of rectification and twist fatigue. The parameters of welding several kinds of materials were obtained. As a result, the qualified contact profile can be produced by making a control of the technical conditions: welding current, welding time, electrode force and electrode material.展开更多
In an atomic force microscope (AFM), the cantilever probe, probe tip and sample surface form a micro system in which micro contact, elastic deformation, relative sliding and friction occur during scanning with the con...In an atomic force microscope (AFM), the cantilever probe, probe tip and sample surface form a micro system in which micro contact, elastic deformation, relative sliding and friction occur during scanning with the contact mode. In this paper, the energy conversion and dissipation during scanning process in the micro system is investigated based on the Mauges-Daules contact model. A dimensionless stick-slip number $\eta = \sqrt {{{8U_1 h^2 } \mathord{\left/ {\vphantom {{8U_1 h^2 } {\left( {k_\theta R_s^2 } \right)}}} \right. \kern-0em} {\left( {k_\theta R_s^2 } \right)}}} $ is defined to describe the micro stick-slip behavior under AFM. Through numerical simulation of the dynamics of the probe tip, it is shown that AFM lateral force is dependent on the defined stick-slip number. If η<1, lateral force is weak and stick-slip phenomenon disappears. When η=1, the probe tip jumps between the asperities on sample surface, showing stick-slip behavior but without energy dissipation. In the case of η>1, the tip moves off the sticking points with an adhesion hysteresis, resulting in an energy dissipation. Therefore, the stick-slip number can serve as a characteristic parameter. Numerical simulation of AFM lateral force with different stick-slip numbers is in agreement with experimental results. Finally a method to extract frictional force from the AFM lateral force signal is proposed.展开更多
Transmission of elastic waves through a micro gap between two solids with consideration of frictional contact is investigated. By using the Fourier analysis technique and the corrective solution method, the nonlinear ...Transmission of elastic waves through a micro gap between two solids with consideration of frictional contact is investigated. By using the Fourier analysis technique and the corrective solution method, the nonlinear boundary problem is reduced to a set of algebraic equations. Numerical results exhibit the locations and extents of separation, slip, and stick zones, the interface tractions, and the energy partition. The effects of gap width, frictional coefficients, and the incident angle on the wave transmission are discussed in detail. The results show that higher harmonics are generated due to the local contact/slip at the interface.展开更多
The sealing performance of contact interfaces plays the most important role in the design and operation of the in-situ pressure-preserved coring system.To meet the demand of ultra-high pressure-retained coring for oil...The sealing performance of contact interfaces plays the most important role in the design and operation of the in-situ pressure-preserved coring system.To meet the demand of ultra-high pressure-retained coring for oil and gas exploration in deep reservoirs,a quantitative analysis of the contact mechanical behavior of the pressure controller was performed.Based on the micro-contact theory of rough surfaces,a three-dimensional numerical model of the rough contact interface between the valve cover and the valve seat was constructed,and the micro-contact behavior of the metal contact surfaces was comprehensively studied.The results show that the actual contact area of the valve interface increases with the increase of surface roughness before the critical contact point,but decreases after that.Compared with the real contact model with double rough surfaces,although the simplified hard-contact model with a single rough surface can reflect the micro-contact behavior of the rough surface to a certain extent,it cannot truly reveal the microchannel morphology between the sealing interfaces under pressure.Therefore,the realistic double-rough-surface model should be recommended to evaluate the sealing performance of coring tools,particularly for high pressure conditions.The material properties of valves have a significant effect on the contact characteristics of rough surfaces,which suggested that the actual contact area decreases with the increase of the elastic modulus of the contact material under the same loading conditions.The knowledge of this work could help to enhance the seal design of pressure controllers for in-situ pressure-preserved coring.展开更多
文摘The cladding preparation technology for the micro contact profile is investigated through the way of seam welding. The effects of the seam welding on different conditions including welding electrical current, welding time, electrode force and electrode material were contrasted through the way of metallographic structure, electron scanning, experiments of rectification and twist fatigue. The parameters of welding several kinds of materials were obtained. As a result, the qualified contact profile can be produced by making a control of the technical conditions: welding current, welding time, electrode force and electrode material.
文摘In an atomic force microscope (AFM), the cantilever probe, probe tip and sample surface form a micro system in which micro contact, elastic deformation, relative sliding and friction occur during scanning with the contact mode. In this paper, the energy conversion and dissipation during scanning process in the micro system is investigated based on the Mauges-Daules contact model. A dimensionless stick-slip number $\eta = \sqrt {{{8U_1 h^2 } \mathord{\left/ {\vphantom {{8U_1 h^2 } {\left( {k_\theta R_s^2 } \right)}}} \right. \kern-0em} {\left( {k_\theta R_s^2 } \right)}}} $ is defined to describe the micro stick-slip behavior under AFM. Through numerical simulation of the dynamics of the probe tip, it is shown that AFM lateral force is dependent on the defined stick-slip number. If η<1, lateral force is weak and stick-slip phenomenon disappears. When η=1, the probe tip jumps between the asperities on sample surface, showing stick-slip behavior but without energy dissipation. In the case of η>1, the tip moves off the sticking points with an adhesion hysteresis, resulting in an energy dissipation. Therefore, the stick-slip number can serve as a characteristic parameter. Numerical simulation of AFM lateral force with different stick-slip numbers is in agreement with experimental results. Finally a method to extract frictional force from the AFM lateral force signal is proposed.
基金Project supported by the National Natural Science Foundation of China(No.10772022)
文摘Transmission of elastic waves through a micro gap between two solids with consideration of frictional contact is investigated. By using the Fourier analysis technique and the corrective solution method, the nonlinear boundary problem is reduced to a set of algebraic equations. Numerical results exhibit the locations and extents of separation, slip, and stick zones, the interface tractions, and the energy partition. The effects of gap width, frictional coefficients, and the incident angle on the wave transmission are discussed in detail. The results show that higher harmonics are generated due to the local contact/slip at the interface.
基金supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08G315)Shenzhen Basic Research Program(General Program,No.JCYJ20190808153416970)National Natural Science Foundation of China No.51827901
文摘The sealing performance of contact interfaces plays the most important role in the design and operation of the in-situ pressure-preserved coring system.To meet the demand of ultra-high pressure-retained coring for oil and gas exploration in deep reservoirs,a quantitative analysis of the contact mechanical behavior of the pressure controller was performed.Based on the micro-contact theory of rough surfaces,a three-dimensional numerical model of the rough contact interface between the valve cover and the valve seat was constructed,and the micro-contact behavior of the metal contact surfaces was comprehensively studied.The results show that the actual contact area of the valve interface increases with the increase of surface roughness before the critical contact point,but decreases after that.Compared with the real contact model with double rough surfaces,although the simplified hard-contact model with a single rough surface can reflect the micro-contact behavior of the rough surface to a certain extent,it cannot truly reveal the microchannel morphology between the sealing interfaces under pressure.Therefore,the realistic double-rough-surface model should be recommended to evaluate the sealing performance of coring tools,particularly for high pressure conditions.The material properties of valves have a significant effect on the contact characteristics of rough surfaces,which suggested that the actual contact area decreases with the increase of the elastic modulus of the contact material under the same loading conditions.The knowledge of this work could help to enhance the seal design of pressure controllers for in-situ pressure-preserved coring.