期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Model of Polysilicon Electro-thermal Micro Actuator and Research of Micro Scale Effect 被引量:2
1
作者 张永宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第B10期59-62,共4页
A type of crank beam electro-thermal micro actuator was prescribed. Mechanical model of the actuator was established, and the static characteristic was analyzed.Comparing the theoretical analysis with experimental dat... A type of crank beam electro-thermal micro actuator was prescribed. Mechanical model of the actuator was established, and the static characteristic was analyzed.Comparing the theoretical analysis with experimental data, it is found that the thermodynamic character of material in micro actuator has a different variable regularity contrasted to that used in macro scale machines. It is the micro scale effect that results in the deviation between the simulating result and experimental results. The thermodynamic expression of polysilicon, which was fitted by means of the experimental data concerned, was used to modify the mechanical model. The modified model, in which the micro scale thermodynamic characteristic was considered, was more reasonable and could make the optimal design and control strategies analyzing the straight-line micro actuator more feasible. 展开更多
关键词 MEMS electro-thermal micro actuator micro scale effect thermal expansion coefficient
下载PDF
Effects of site conditions on earthquake ground motion and their applications in seismic design in loess region 被引量:8
2
作者 WANG Lan-min WU Zhi-jian XIA Kun 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1185-1193,共9页
The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake(Ms8.0) and the 2013 Minxian-Zhangxian earthquake(Ms6.6)... The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake(Ms8.0) and the 2013 Minxian-Zhangxian earthquake(Ms6.6). The field investigations, observations, and analyses indicated that large number of casualties and tremendous economic losses were caused not only by collapse and damage of houses with poor seismic performance, landslides, but also amplification effects of site conditions, topography and thickness of loess deposit, on ground motion. In this paper, we chose Dazhai Village and Majiagou Village as the typical loess site affected by the two earthquakes for intensity evaluation, borehole exploration, temporary strong motion array, micro tremor survey, and numerical analysis. The aim is to explore the relations between amplification factors and site conditions in terms of topography and thickness of loess deposit. We also developed site amplification factors of ground motion for engineering design consideration at loess sites. The results showed that the amplification effects are more predominant with increase in thickness of loess deposit and slope height. The amplification mayincrease seismic intensity by 1 degree, PGA and predominant period by 2 times, respectively. 展开更多
关键词 Loessial site Field investigation Ground motion observation micro tremor observation Loess topography Loess thickness Site effects Seismic design
下载PDF
On the strengthening and slip activity of Mg-3Al-1Zn alloy with pre-induced{1012¯}twins 被引量:1
3
作者 Jie Kuang Yuqing Zhang +3 位作者 Xinpeng Du Jinyu Zhang Gang Liu Jun Sun 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1292-1307,共16页
{1012¯}twins were introduced into the magnesium(Mg)plate AZ31 via pre-rolling along its transverse direction.The plates,both with and without the pre-induced{1012¯}twins,were subjected to uniaxial tension al... {1012¯}twins were introduced into the magnesium(Mg)plate AZ31 via pre-rolling along its transverse direction.The plates,both with and without the pre-induced{1012¯}twins,were subjected to uniaxial tension along different directions.Using crystal plasticity modeling,we found that the strengthening effect of the pre-induced{1012¯}twins on the macroscopic flow stress primarily arised from the increased slip resistance caused by the boundaries,rather than the orientation hardening due to the twinning reorientation(although the latter did make its contribution in some specific loading directions).Besides,the pre-existing{1012¯}twins were found,by both experiments and simulation,to promote the activity of prismatic and pyramidal<c+a>in the parent matrix of the material.Further analysis showed that the enhanced non-basal slip activity is related to the{1012¯}twin boundaries’low micro Hall-Petch slope ratios of non-basal slips to basal slip.With the critical resolved shear stress(CRSS)obtained from crystal plasticity modeling and the orientation data from EBSD,a probability-based slip transfer model was proposed.The model predicts higher slip transfer probabilities and thus lower strain concentration tendencies at{1012¯}twin boundaries than that at grain boundaries,which agrees with the experimental observation that the strain localization was primarily associated with the latter.The present findings are helpful scientifically,in deepening our understanding of how the pre-induced{1012¯}twins affect the strength and slip activity of Mg alloys,and technologically,in guiding the design of the pre-strain protocol of Mg alloys. 展开更多
关键词 Mg alloy {1012¯}twins Strengthening Slip activity micro Hall-Petch effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部