Organic inclusions from the Shahejie Formation of the Eogene period in the Bohai Gulf Basin, eastern China, were examined using micro\|FT. IR and fluorescence microscopy in addition to the measurement of their homogen...Organic inclusions from the Shahejie Formation of the Eogene period in the Bohai Gulf Basin, eastern China, were examined using micro\|FT. IR and fluorescence microscopy in addition to the measurement of their homogenization temperatures (T\-h). Two populations of organic inclusions were recognized, the primary and the secondary organic inclusions. The primary organic inclusions contain organic materials with relatively long alkyl chains (the carbon atom number is 15 to 17), whereas the secondary organic inclusions contain a certain amount of H\-2S besides organic materials which have relatively short alkyl chains with the carbon atom number of 5 to 6. The T\-h values of the primary organic inclusions are within the range of 87-91℃, lower than those of the secondary organic inclusions (T\-h=98-105℃), suggesting that the primary organic inclusions experienced a lower degree of thermal evolution than the secondary inclusions. This inference is consistent with the fluorescence spectroscopic characteristics and parameters (T\-\{max\}, Q values) of the organic inclusions. Data from the organic inclusions together with the petroleum geology setting revealed that the primary inclusions resulted from the migration of hydrocarbons generated within the strata they are hosted, whereas the secondary organic inclusions were trapped in the process of secondary hydrocarbons expelled out of the source rocks to the locations where they were accumulated. The thermal properties of the organic inclusions are consistent with the maturation of the oil generated from the Shahejie Formation. The abundance of the organic inclusions and their characteristics indicate that the member Es3 of the Shahejie Formation is highly potential for oil accumulation. The results could provide essential clues to petroleum exploration in the Bohai Gulf Basin.展开更多
A single molecule detection technique was developed by the combination of a single channel poly (dimethylsiloxane)/glass micro-fluidic chip and fluorescence correlation spectroscopy (FCS). This method was successf...A single molecule detection technique was developed by the combination of a single channel poly (dimethylsiloxane)/glass micro-fluidic chip and fluorescence correlation spectroscopy (FCS). This method was successfully used to determine the proportion of two model components in the mixture containing fluorescein and the rhodamine-green succinimidyl ester.展开更多
The measurement of the confocal volume of a confocal three-dimensional micro-x-ray fluorescence(3D-XRF)setup is a key step in the field of confocal 3D-XRF analysis.With the development of x-ray facilities and optical ...The measurement of the confocal volume of a confocal three-dimensional micro-x-ray fluorescence(3D-XRF)setup is a key step in the field of confocal 3D-XRF analysis.With the development of x-ray facilities and optical devices,3D-XRF analysis with a micro confocal volume will create a great potential for 2D and 3D microstructural analysis and accurate quantitative analysis.However,the classic measurement method of scanning metal foils of a certain thickness leads to inaccuracy.A method for calibrating the confocal volume is proposed in this paper.The new method is based on the basic content of the textbook,and the theoretical results and the feasibility are given in detail for the 3D-XRF mono-chromatic x-ray condition and the poly-chromatic x-ray condition.We obtain a set of experimental confirmation using the poly-chromatic x-ray tube in the laboratory.It is proved that the sensitivity factor of the 3D-XRF can be directly and accurately obtained in a real calibration process.展开更多
Investigating the impact of microhydration on the excited-states and electronic excitation properties of biomolecules has remained one of the important yet challenging aspects of science because of the complexity of d...Investigating the impact of microhydration on the excited-states and electronic excitation properties of biomolecules has remained one of the important yet challenging aspects of science because of the complexity of developing models. However, with the advent of computational chemistry methods such as TD-DFT, many useful insights about the electronic excitation energy and excited-state nature of biomolecules can be explored. Accordingly, in our study, we have incorporated the TD-DFT/wB97XD/cc-pVTZ method to study the excited state properties of N-acetyl phenylalanine amide (NAPA-A(H<sub>2</sub>O) <sub>n</sub>) (n = 1 to 4) clusters from ground to the tenth lowest gaseous singlet excited state. We found that the C=O bond length gradually increases both in N-terminal amide and C-terminal amide after the sequential addition of water molecules because of intermolecular H-bonding and this intermolecular H-bonding becomes weaker after the sequential addition of H<sub>2</sub>O molecules. The UV absorption maxima of NAPA-A (H<sub>2</sub>O)<sub>n</sub> (n = 1 - 4) clusters consisted of two peaks that are S<sub>5</sub>←S<sub>0</sub> (1<sup>st</sup> absorption) and S<sub>6</sub>←S<sub>0</sub> (2<sup>nd</sup> absorption) excitations. The first absorption maxima were blue-shifted with the increase in oscillator strength. This means that strong H-bonds reduce the charge transfer and make clusters more rigid. On the other hand, the second absorption maxima were red-shifted with the decrease in oscillator strength. In the ECD spectra, the negative bands indicate the presence of an amide bond and L-configuration of micro hydrated NAPA-A clusters. Finally, our calculated absorption and fluorescence energy confirm that all the NAPA-A (H<sub>2</sub>O) <sub>n</sub> (n = 0 - 4) clusters revert to the ground state from the fluorescent state by emitting around 5.490 eV of light.展开更多
基金ThisprojectwassupportedbytheNationalNaturalScienceFoundationofChina (No .496 72 131) .
文摘Organic inclusions from the Shahejie Formation of the Eogene period in the Bohai Gulf Basin, eastern China, were examined using micro\|FT. IR and fluorescence microscopy in addition to the measurement of their homogenization temperatures (T\-h). Two populations of organic inclusions were recognized, the primary and the secondary organic inclusions. The primary organic inclusions contain organic materials with relatively long alkyl chains (the carbon atom number is 15 to 17), whereas the secondary organic inclusions contain a certain amount of H\-2S besides organic materials which have relatively short alkyl chains with the carbon atom number of 5 to 6. The T\-h values of the primary organic inclusions are within the range of 87-91℃, lower than those of the secondary organic inclusions (T\-h=98-105℃), suggesting that the primary organic inclusions experienced a lower degree of thermal evolution than the secondary inclusions. This inference is consistent with the fluorescence spectroscopic characteristics and parameters (T\-\{max\}, Q values) of the organic inclusions. Data from the organic inclusions together with the petroleum geology setting revealed that the primary inclusions resulted from the migration of hydrocarbons generated within the strata they are hosted, whereas the secondary organic inclusions were trapped in the process of secondary hydrocarbons expelled out of the source rocks to the locations where they were accumulated. The thermal properties of the organic inclusions are consistent with the maturation of the oil generated from the Shahejie Formation. The abundance of the organic inclusions and their characteristics indicate that the member Es3 of the Shahejie Formation is highly potential for oil accumulation. The results could provide essential clues to petroleum exploration in the Bohai Gulf Basin.
基金This work was financially supported by the National Natural Science Foundation of China. (No.20271033, 20335020, 90408014).
文摘A single molecule detection technique was developed by the combination of a single channel poly (dimethylsiloxane)/glass micro-fluidic chip and fluorescence correlation spectroscopy (FCS). This method was successfully used to determine the proportion of two model components in the mixture containing fluorescein and the rhodamine-green succinimidyl ester.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675019 and 11875087).
文摘The measurement of the confocal volume of a confocal three-dimensional micro-x-ray fluorescence(3D-XRF)setup is a key step in the field of confocal 3D-XRF analysis.With the development of x-ray facilities and optical devices,3D-XRF analysis with a micro confocal volume will create a great potential for 2D and 3D microstructural analysis and accurate quantitative analysis.However,the classic measurement method of scanning metal foils of a certain thickness leads to inaccuracy.A method for calibrating the confocal volume is proposed in this paper.The new method is based on the basic content of the textbook,and the theoretical results and the feasibility are given in detail for the 3D-XRF mono-chromatic x-ray condition and the poly-chromatic x-ray condition.We obtain a set of experimental confirmation using the poly-chromatic x-ray tube in the laboratory.It is proved that the sensitivity factor of the 3D-XRF can be directly and accurately obtained in a real calibration process.
文摘Investigating the impact of microhydration on the excited-states and electronic excitation properties of biomolecules has remained one of the important yet challenging aspects of science because of the complexity of developing models. However, with the advent of computational chemistry methods such as TD-DFT, many useful insights about the electronic excitation energy and excited-state nature of biomolecules can be explored. Accordingly, in our study, we have incorporated the TD-DFT/wB97XD/cc-pVTZ method to study the excited state properties of N-acetyl phenylalanine amide (NAPA-A(H<sub>2</sub>O) <sub>n</sub>) (n = 1 to 4) clusters from ground to the tenth lowest gaseous singlet excited state. We found that the C=O bond length gradually increases both in N-terminal amide and C-terminal amide after the sequential addition of water molecules because of intermolecular H-bonding and this intermolecular H-bonding becomes weaker after the sequential addition of H<sub>2</sub>O molecules. The UV absorption maxima of NAPA-A (H<sub>2</sub>O)<sub>n</sub> (n = 1 - 4) clusters consisted of two peaks that are S<sub>5</sub>←S<sub>0</sub> (1<sup>st</sup> absorption) and S<sub>6</sub>←S<sub>0</sub> (2<sup>nd</sup> absorption) excitations. The first absorption maxima were blue-shifted with the increase in oscillator strength. This means that strong H-bonds reduce the charge transfer and make clusters more rigid. On the other hand, the second absorption maxima were red-shifted with the decrease in oscillator strength. In the ECD spectra, the negative bands indicate the presence of an amide bond and L-configuration of micro hydrated NAPA-A clusters. Finally, our calculated absorption and fluorescence energy confirm that all the NAPA-A (H<sub>2</sub>O) <sub>n</sub> (n = 0 - 4) clusters revert to the ground state from the fluorescent state by emitting around 5.490 eV of light.