期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Robust tracking control for micro machine tools with load uncertainties 被引量:2
1
作者 FAN Shi-xun FAN Da-peng +1 位作者 HONG Hua-jie ZHANG Zhi-yong 《Journal of Central South University》 SCIE EI CAS 2012年第1期117-127,共11页
The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone t... The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone to uncertainties such as model parameter variations and disturbances. Robust optimal tracking controller design for this kind of precision stages with mass and damping ratio uncertainties was researched. The mass and damping ratio uncertainties were modeled as the structured parametric uncertainty model. An identification method for obtaining the parametric uncertainties was developed by using unbiased least square technique. The instantaneous frequency bandwidth of the external disturbance signals was analyzed by using short time Fourier transform technique. A two loop tracking control strategy that combines the p-synthesis and the disturbance observer (DOB) techniques was proposed. The p-synthesis technique was used to design robust optimal controllers based on structured uncertainty models. By complementing the/z controller, the DOB was applied to further improving the disturbance rejection performance. To evaluate the positioning performance of the proposed control strategy, the comparative experiments were conducted on a prototype micro milling machine among four control schemes: the proposed two-loop tracking control, the single loop μ control, the PID control and the PID with DOB control. The disturbance rejection performances, the root mean square (RMS) tracking errors and the performance robustness of different control schemes were studied. The results reveal that the proposed control scheme has the best positioning performance. It reduces the maximal errors caused by disturbance forces such as friction force by 60% and the RMS errors by 63.4% compared with the PID control. Compared to PID with DOB control, it reduces the RMS errors by 29.6%. 展开更多
关键词 micro machine tools servos parametric uncertainty model instantaneous frequency disturbance observer p-synthesis
下载PDF
Double-loop robust tracking control for micro machine tools 被引量:2
2
作者 FAN ShiXun NAGAMUNE Ryozo FAN DaPeng 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第11期3054-3063,共10页
This paper addresses double-loop robust tracking controller design of the miniaturized linear motor drive precision stage with mass and damping ratio uncertainties. As an inner-loop, a disturbance observer (DOB) is ... This paper addresses double-loop robust tracking controller design of the miniaturized linear motor drive precision stage with mass and damping ratio uncertainties. As an inner-loop, a disturbance observer (DOB) is employed to suppress exogenous low frequency disturbances such as friction and cutting force. To further eliminate the residual disturbance and to guarantee the robust tracking to the reference input, μ-synthesis outer-loop controller is designed. For eliminating the steady state error, a technique is proposed to design the μ-synthesis outer-loop controller with an integrator. A guideline to select the bandwidth of the Q-filter in the DOB is provided. Simulations using a model of a prototype micro-milling machine indicate that the proposed outer-loop synthesis scheme is superior to the H∞ suboptimal control in disturbance rejection performance and steady state tracking performance. Furthermore, it is shown experimentally that the proposed double-loop robust tracking controller improves the tracking performance of the stage by 29.6% over PID control with a DOB inner-loop. 展开更多
关键词 micro machine tools robust tracking μ-synthesis disturbance observer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部