A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in ...A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in transverse. The additional shearing introduced by bending of fiber yarn is considered. The method to determine the microstructure is also discussed. This model is applied to the analysis of a 3-D woven graphite/epoxy composite. Micro stresses of the cell are studied, and then macro modulus is obtained by employing the average method. The predictions agree well with experimental results.展开更多
The effects of Zn content on the microstxucture and the mechanical and corrosion properties of as-cast low-alloyed Mg-xZn~.2Ca alloys (x = 0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, ...The effects of Zn content on the microstxucture and the mechanical and corrosion properties of as-cast low-alloyed Mg-xZn~.2Ca alloys (x = 0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, respectively) axe investigated. The results show that the Zn content not only influences grain refinement but also induces different phase precipitation behaviors. The as-cast microstxucture of the 0.6Zn alloy is composed of ct-Mg, Mg2Ca, and Ca2Mg6Zn3 phases, whereas 2.0Zn and 2.5Zn alloys only contain ct-Mg and Ca2Mg6Zn3 phases, as revealed by X-ray diffraction (XRD) and txonsmission electron microscopy (TEM) analyses. Moreover, with in- creasing Zn content, both the ultimate tensile strength (UTS) and the elongation to fracture first increase and then decrease. Among the three investigated alloys, the largest UTS (178 MPa) and the highest elongation to fracture (6.5%) are obtained for the 2.0Zn alloy. In addition, the corrosion rate increases with increasing Zn content. This paper provides on updated investigation of the alloy composi- tion-microstxucture-property relationships of different Zn-containing Mg-Zn-Ca alloys.展开更多
A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial ten...A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial tension/compression and bending/shearing couplings as well as the mutual reactions of fiber yarns. The method determining microstructure by using woven parameters is described for a typical 3D woven composite material. An analytical cell, constructed by a minimum periodic section of yarn and interlayer matrix, is adopted. Micro stresses in the cell under in-plane tensile loading are obtained by using the proposed beam model and macro modulus is then obtained by the averaging method. Material tests and a 2D micro FEM analysis are made to evaluate this model. Analyses reveal that micro stress caused by tensile/bending coupling effect is not negligible in the stress analysis.展开更多
A novel micro fused-casting for metal(MFCM) process for producing A356 aluminum alloy slurry was proposed. MFCM means that the refined metal slurry is pressed out from the outlet of bottom of crucible to the horizon...A novel micro fused-casting for metal(MFCM) process for producing A356 aluminum alloy slurry was proposed. MFCM means that the refined metal slurry is pressed out from the outlet of bottom of crucible to the horizontal movable plate. With the aid of 3D manufacturing software, the melt is solidified and formed layer by layer. The stirring could keep the ingredients and the heat diffusion of metal slurry uniform in the crucible due to the shear force breaking down the dendrite arms. The solidus and liquidus temperatures of A356 alloy were 559.2 and 626.3 ℃, respectively, which were measured by differential scanning calorimetry(DSC). Effect of different stirring velocities of MFCM on the microstructure and mechanical properties of A356 slurry was investigated with the pouring temperature controlled at 620 ℃. The microstructure and mechanical performance were the best when the stirring velocity was 1 200 r/min in MFCM. The microstructures of the A356 aluminum alloy slurry were mainly composed of fine spherical or rose grains. The average roundness and average grain size reached 2.2 and 41 μm and the tensile strength of A356 alloy slurry reached 207.8 MPa, while the average vickers hardness was 81.1 HV.展开更多
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of...The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.展开更多
Nano-SiO2 particles strengthened Ni-based composite coating was designed and prepared on steel substrate. The structures and nanoparticle content of the nano-SiO2/Ni composite coating were determined by SEM, EDS and T...Nano-SiO2 particles strengthened Ni-based composite coating was designed and prepared on steel substrate. The structures and nanoparticle content of the nano-SiO2/Ni composite coating were determined by SEM, EDS and TEM; and the micro mechanical properties were tested by nano-indentation technique. The results show that 56% of particles in the solution are dispersed in size of less than 100nm, the content of nanoparticles co-deposited in the coating doubles and structure of the coating is more compact and uniform than that of Ni coating. Nano-SiO2/Ni coating exhibits excellent micro mechanical properties, and the nanohardness and elastic modulus are 7.81GPa and 198GPa, respectively, which are attributed to finer crystal strengthening, dispersion strengthening and high-density dislocation strengthening of nano-SiO2 particles to the composite coatings.展开更多
Soldering experiments of quad flat package(QFP) devices were carried out by means of diode laser soldering system with Sn-Ag-Cu and Sn-Cu-Ni lead-free solders, and competitive experiments were also carried out not onl...Soldering experiments of quad flat package(QFP) devices were carried out by means of diode laser soldering system with Sn-Ag-Cu and Sn-Cu-Ni lead-free solders, and competitive experiments were also carried out not only with Sn-Pb eutectic solders but also with infrared reflow soldering method. The results indicate that under the conditions of laser continuous scanning mode as well as the fixed laser soldering time, an optimal power exists, while the optimal mechanical properties of QFP micro-joints are gained. Mechanical properties of QFP micro-joints soldered with laser soldering system are better than those of QFP micro-joints soldered with IR reflow soldering method. Fracture morphologies of QFP micro-joints soldered with laser soldering system exhibit the characteristic of tough fracture, and homogeneous and fine dimples appear under the optimal laser output power.展开更多
The present paper investigates the existence of chaos in a non-autonomous fractional-order micro-electromechanical resonator system(FOMEMRS).Using the maximal Lyapunov exponent criterion,we show that the FOMEMRS exh...The present paper investigates the existence of chaos in a non-autonomous fractional-order micro-electromechanical resonator system(FOMEMRS).Using the maximal Lyapunov exponent criterion,we show that the FOMEMRS exhibits chaos.Strange attractors of the system are plotted to validate its chaotic behavior.Afterward,a novel fractional finite-time controller is introduced to suppress the chaos of the FOMEMRS with model uncertainties and external disturbances in a given finite time.Using the latest version of the fractional Lyapunov theory,the finite time stability and robustness of the proposed scheme are proved.Finally,we present some computer simulations to illustrate the usefulness and applicability of the proposed method.展开更多
This research reviews the application of computational mechanics on the properties of nano/micro scaled thin films,in which the application of different computational methods is included.The concept and fundamental th...This research reviews the application of computational mechanics on the properties of nano/micro scaled thin films,in which the application of different computational methods is included.The concept and fundamental theories of concerned applications,material behavior estimations,interfacial delamination behavior,strain engineering,and multilevel modeling are thoroughly discussed.Moreover,an example of an interfacial adhesion estimation is presented to systematically estimate the related mechanical reliability issue in the microelectronic industry.The presented results show that the peeled mode fracture is the dominant delamination behavior of layered material system,with high stiffness along the bonding interface.However,the shear mode fracture being dominated as the polymer cover plate with low moduli is considered.The occurrence of crack advance is also significantly influenced by the interfacial crack length and applied loading.Therefore,this paper could serve as a guideline of several engineering cases with the assistance of computational mechanics.展开更多
A micro shear testing method which can suit to measure the mechanical properties of heterogeneous materials is introduced, and the properties in each zone of welded joint for CO2 arc welding can be evaluated by using ...A micro shear testing method which can suit to measure the mechanical properties of heterogeneous materials is introduced, and the properties in each zone of welded joint for CO2 arc welding can be evaluated by using this method in this paper. Moreover, these results are compared with those results of Charpy V-notch impact test and their correlation is discussed.展开更多
The effects of rare earth (Y) on Ti-TisSi3 eutectic alloy are studied. The results of microstructure analysis show that the colonies and microstructures of the raw alloy are transformed evidently with the addition o...The effects of rare earth (Y) on Ti-TisSi3 eutectic alloy are studied. The results of microstructure analysis show that the colonies and microstructures of the raw alloy are transformed evidently with the addition of Y. With proper addition of yttrium (0.025at%), the shape and size of the coarse TisSi3 phases of the colonies change to be fine and round meanwhile the microstructure of the alloy goes into uniformity. The compressive ductility and strength at room temperature are also improved. The effects of yttrium on the alloy are likely due to that Si atoms in TisSi3 phase are partially substituted for yttrium atoms which results in silicide Ti5(Si, Y)3 phases.展开更多
Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo...Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo anatomical and functional information.This technology has great application potential in microscopic imaging and endoscope system.In recent years,the devel-opment of micro electro mechanical system(MEMS)technology has promoted the improvement and miniaturization of the photoacoustic imaging system,as well as its preclinical and clinical appli-cations.This paper introduces the research progress of MEMS technology in photoacoustic micro-scope systems and the miniaturization of photoacoustic endoscope ultrasonic transducers,and points out the shortcomings of existing technology and the direction of future development.展开更多
An extensive investigation was made on the effects of micro-alloying with small amounts of Sc and Mn on the microstructure and mechanical properties of the Al-Mg based alloys. It is found that the micro-alloying can s...An extensive investigation was made on the effects of micro-alloying with small amounts of Sc and Mn on the microstructure and mechanical properties of the Al-Mg based alloys. It is found that the micro-alloying can significantly enhance the tensile strength of the alloys, and eliminate the dendritic cast structure in it. Many fine, spherical and dispersive Al3Sc particles are found in the annealed Al-Mg-Mn-Sc alloys, which can strongly pin up dislocations and subgrain boundaries, thus strongly retarding the recrystallization of the alloys. The strengthening of the micro-alloyed Al-Mg alloys is attributed to the precipitation strengthening by the Al3Sc particles and to the substructure strengthening.展开更多
The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits t...The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy(SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect(TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N · mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature(15 ℃) and unclamping action below –5 ℃. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and balanced motions.展开更多
The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. ...The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.展开更多
Electrical property of a micro-plasma spray system with different working-gas feed- ing schemes was tested to optimize the plasma spray process. The arc voltage with an integrated gas injection mode is higher than tha...Electrical property of a micro-plasma spray system with different working-gas feed- ing schemes was tested to optimize the plasma spray process. The arc voltage with an integrated gas injection mode is higher than that with radial injection or axial injection modes. Thus, an integrated gas injection mode with an excellent electrical characteristic was adopted to deposit alumina-titania coating. The microstructure, bonding strength and hardness of the plasma sprayed alumina-titania coating, as a function of the spraying parameters, e.g., plasma current, gas flow rate and gas pressure, were studied. It was shown that the spraying parameters affected remarkably on the microstructure of the coating. Different tendencies in bonding strength and hardness were also shown for different spraying parameters. At an arc current of 250 A, a gas flow rate of 20 L/min and a gas pressure of 0.5 MPa, the bonding strength and micro-hardness of the coatings reach 40.6 MPa and HV1406.1, respectively.展开更多
Indentation is a simple and nondestructive method to measure the mechanical properties of soft materials, such as hydrogels, elastomers and soft tissues. In this work, we have developed a micro-indentation system with...Indentation is a simple and nondestructive method to measure the mechanical properties of soft materials, such as hydrogels, elastomers and soft tissues. In this work, we have developed a micro-indentation system with high-precision to measure the mechanical properties of soft materials, where the shear modulus and Poisson's ratio of the materials can be obtained by analyzing the load relaxation curve. We have validated the accuracy and stability of the system by comparing the measured mechanical properties of a polyethylene glycol sample with that obtained from a commercial instrument. The mechanical properties of another typical polydimethylsiloxane sample submerged in heptane are measured by using conical and spherical indenters, respectively. The measured values of shear modulus and Poisson's ratio are within a reasonable range.展开更多
According to the inland micro electro-mechanical system (MEMS) process technique level, a design platform of piezoresistive micro electro-mechanical accelerometer is given. This platform is much more adaptable to th...According to the inland micro electro-mechanical system (MEMS) process technique level, a design platform of piezoresistive micro electro-mechanical accelerometer is given. This platform is much more adaptable to the inland designer compared with the current MEMS CAD software. The design flow is presented in detail, and the key techique in the platform is analyzed amply. The structure design methodology is exemplified in the design of a piezoresistive accelerometer, and the accelerometer is the optimized structure for the given performance requirements. The accelerometer is now being manufactured.展开更多
文摘A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in transverse. The additional shearing introduced by bending of fiber yarn is considered. The method to determine the microstructure is also discussed. This model is applied to the analysis of a 3-D woven graphite/epoxy composite. Micro stresses of the cell are studied, and then macro modulus is obtained by employing the average method. The predictions agree well with experimental results.
基金supported by the National Natural Science Foundation of China(No.51671017)Fundamental Research Funds for the Central Universities(No.FRF-GF-17-B3)+1 种基金Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,the Opening Research Fund of State Key Laboratory for Advanced Metals and Materials(Nos.2016Z-11,2017Z-08)State's Key Project of Research and Development Plan(No.2016YFB0300801)
文摘The effects of Zn content on the microstxucture and the mechanical and corrosion properties of as-cast low-alloyed Mg-xZn~.2Ca alloys (x = 0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, respectively) axe investigated. The results show that the Zn content not only influences grain refinement but also induces different phase precipitation behaviors. The as-cast microstxucture of the 0.6Zn alloy is composed of ct-Mg, Mg2Ca, and Ca2Mg6Zn3 phases, whereas 2.0Zn and 2.5Zn alloys only contain ct-Mg and Ca2Mg6Zn3 phases, as revealed by X-ray diffraction (XRD) and txonsmission electron microscopy (TEM) analyses. Moreover, with in- creasing Zn content, both the ultimate tensile strength (UTS) and the elongation to fracture first increase and then decrease. Among the three investigated alloys, the largest UTS (178 MPa) and the highest elongation to fracture (6.5%) are obtained for the 2.0Zn alloy. In addition, the corrosion rate increases with increasing Zn content. This paper provides on updated investigation of the alloy composi- tion-microstxucture-property relationships of different Zn-containing Mg-Zn-Ca alloys.
文摘A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial tension/compression and bending/shearing couplings as well as the mutual reactions of fiber yarns. The method determining microstructure by using woven parameters is described for a typical 3D woven composite material. An analytical cell, constructed by a minimum periodic section of yarn and interlayer matrix, is adopted. Micro stresses in the cell under in-plane tensile loading are obtained by using the proposed beam model and macro modulus is then obtained by the averaging method. Material tests and a 2D micro FEM analysis are made to evaluate this model. Analyses reveal that micro stress caused by tensile/bending coupling effect is not negligible in the stress analysis.
基金Funded by the National Natural Science Foundation of China(No.51341009)
文摘A novel micro fused-casting for metal(MFCM) process for producing A356 aluminum alloy slurry was proposed. MFCM means that the refined metal slurry is pressed out from the outlet of bottom of crucible to the horizontal movable plate. With the aid of 3D manufacturing software, the melt is solidified and formed layer by layer. The stirring could keep the ingredients and the heat diffusion of metal slurry uniform in the crucible due to the shear force breaking down the dendrite arms. The solidus and liquidus temperatures of A356 alloy were 559.2 and 626.3 ℃, respectively, which were measured by differential scanning calorimetry(DSC). Effect of different stirring velocities of MFCM on the microstructure and mechanical properties of A356 slurry was investigated with the pouring temperature controlled at 620 ℃. The microstructure and mechanical performance were the best when the stirring velocity was 1 200 r/min in MFCM. The microstructures of the A356 aluminum alloy slurry were mainly composed of fine spherical or rose grains. The average roundness and average grain size reached 2.2 and 41 μm and the tensile strength of A356 alloy slurry reached 207.8 MPa, while the average vickers hardness was 81.1 HV.
基金the Fundamental Research Funds for the Central Universities(Grant No.30920041102)National Natural Science Foundation of China(Grant No.11802134).
文摘The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.
文摘Nano-SiO2 particles strengthened Ni-based composite coating was designed and prepared on steel substrate. The structures and nanoparticle content of the nano-SiO2/Ni composite coating were determined by SEM, EDS and TEM; and the micro mechanical properties were tested by nano-indentation technique. The results show that 56% of particles in the solution are dispersed in size of less than 100nm, the content of nanoparticles co-deposited in the coating doubles and structure of the coating is more compact and uniform than that of Ni coating. Nano-SiO2/Ni coating exhibits excellent micro mechanical properties, and the nanohardness and elastic modulus are 7.81GPa and 198GPa, respectively, which are attributed to finer crystal strengthening, dispersion strengthening and high-density dislocation strengthening of nano-SiO2 particles to the composite coatings.
基金Project(CX07B_087z) supported by Jiangsu General Colleges and Universities Postgraduate Scientific Research Innovative Plan, ChinaProject(06-E-020) supported by the Six Kind Skilled Personnel Project of Jiangsu Province, China
文摘Soldering experiments of quad flat package(QFP) devices were carried out by means of diode laser soldering system with Sn-Ag-Cu and Sn-Cu-Ni lead-free solders, and competitive experiments were also carried out not only with Sn-Pb eutectic solders but also with infrared reflow soldering method. The results indicate that under the conditions of laser continuous scanning mode as well as the fixed laser soldering time, an optimal power exists, while the optimal mechanical properties of QFP micro-joints are gained. Mechanical properties of QFP micro-joints soldered with laser soldering system are better than those of QFP micro-joints soldered with IR reflow soldering method. Fracture morphologies of QFP micro-joints soldered with laser soldering system exhibit the characteristic of tough fracture, and homogeneous and fine dimples appear under the optimal laser output power.
文摘The present paper investigates the existence of chaos in a non-autonomous fractional-order micro-electromechanical resonator system(FOMEMRS).Using the maximal Lyapunov exponent criterion,we show that the FOMEMRS exhibits chaos.Strange attractors of the system are plotted to validate its chaotic behavior.Afterward,a novel fractional finite-time controller is introduced to suppress the chaos of the FOMEMRS with model uncertainties and external disturbances in a given finite time.Using the latest version of the fractional Lyapunov theory,the finite time stability and robustness of the proposed scheme are proved.Finally,we present some computer simulations to illustrate the usefulness and applicability of the proposed method.
文摘This research reviews the application of computational mechanics on the properties of nano/micro scaled thin films,in which the application of different computational methods is included.The concept and fundamental theories of concerned applications,material behavior estimations,interfacial delamination behavior,strain engineering,and multilevel modeling are thoroughly discussed.Moreover,an example of an interfacial adhesion estimation is presented to systematically estimate the related mechanical reliability issue in the microelectronic industry.The presented results show that the peeled mode fracture is the dominant delamination behavior of layered material system,with high stiffness along the bonding interface.However,the shear mode fracture being dominated as the polymer cover plate with low moduli is considered.The occurrence of crack advance is also significantly influenced by the interfacial crack length and applied loading.Therefore,this paper could serve as a guideline of several engineering cases with the assistance of computational mechanics.
文摘A micro shear testing method which can suit to measure the mechanical properties of heterogeneous materials is introduced, and the properties in each zone of welded joint for CO2 arc welding can be evaluated by using this method in this paper. Moreover, these results are compared with those results of Charpy V-notch impact test and their correlation is discussed.
文摘The effects of rare earth (Y) on Ti-TisSi3 eutectic alloy are studied. The results of microstructure analysis show that the colonies and microstructures of the raw alloy are transformed evidently with the addition of Y. With proper addition of yttrium (0.025at%), the shape and size of the coarse TisSi3 phases of the colonies change to be fine and round meanwhile the microstructure of the alloy goes into uniformity. The compressive ductility and strength at room temperature are also improved. The effects of yttrium on the alloy are likely due to that Si atoms in TisSi3 phase are partially substituted for yttrium atoms which results in silicide Ti5(Si, Y)3 phases.
基金supported by the National Natural Science Foundation of China(No.32101153)the Fundamental Research Funds for the Central Universities(No.2021CX11018).
文摘Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo anatomical and functional information.This technology has great application potential in microscopic imaging and endoscope system.In recent years,the devel-opment of micro electro mechanical system(MEMS)technology has promoted the improvement and miniaturization of the photoacoustic imaging system,as well as its preclinical and clinical appli-cations.This paper introduces the research progress of MEMS technology in photoacoustic micro-scope systems and the miniaturization of photoacoustic endoscope ultrasonic transducers,and points out the shortcomings of existing technology and the direction of future development.
文摘An extensive investigation was made on the effects of micro-alloying with small amounts of Sc and Mn on the microstructure and mechanical properties of the Al-Mg based alloys. It is found that the micro-alloying can significantly enhance the tensile strength of the alloys, and eliminate the dendritic cast structure in it. Many fine, spherical and dispersive Al3Sc particles are found in the annealed Al-Mg-Mn-Sc alloys, which can strongly pin up dislocations and subgrain boundaries, thus strongly retarding the recrystallization of the alloys. The strengthening of the micro-alloyed Al-Mg alloys is attributed to the precipitation strengthening by the Al3Sc particles and to the substructure strengthening.
基金Supported by National Natural Science Foundation of China(Grant Nos.51505140,51375156)China Postdoctoral Science Foundation(Grant No.2015M570676)Hunan Provincial Natural Science Foundation of China
文摘The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy(SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect(TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N · mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature(15 ℃) and unclamping action below –5 ℃. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and balanced motions.
基金Funded by the National Natural Science Foundation of China(Nos.51108237 and 51178112)
文摘The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.
文摘Electrical property of a micro-plasma spray system with different working-gas feed- ing schemes was tested to optimize the plasma spray process. The arc voltage with an integrated gas injection mode is higher than that with radial injection or axial injection modes. Thus, an integrated gas injection mode with an excellent electrical characteristic was adopted to deposit alumina-titania coating. The microstructure, bonding strength and hardness of the plasma sprayed alumina-titania coating, as a function of the spraying parameters, e.g., plasma current, gas flow rate and gas pressure, were studied. It was shown that the spraying parameters affected remarkably on the microstructure of the coating. Different tendencies in bonding strength and hardness were also shown for different spraying parameters. At an arc current of 250 A, a gas flow rate of 20 L/min and a gas pressure of 0.5 MPa, the bonding strength and micro-hardness of the coatings reach 40.6 MPa and HV1406.1, respectively.
基金supported by the National "111 Project" Foundation of China(B06024)the National Natural Science Foundation of China(11372243)+3 种基金"Zhi Gu" Innovation Program of Southern Chinathe Major InternationalJoint Research Program of China(11120101002)International Science and Technology Cooperation Program of China(2013DFG02930)partially supported by the Fundamental Research Funds for the Central Universities(NCET-12-0437)
文摘Indentation is a simple and nondestructive method to measure the mechanical properties of soft materials, such as hydrogels, elastomers and soft tissues. In this work, we have developed a micro-indentation system with high-precision to measure the mechanical properties of soft materials, where the shear modulus and Poisson's ratio of the materials can be obtained by analyzing the load relaxation curve. We have validated the accuracy and stability of the system by comparing the measured mechanical properties of a polyethylene glycol sample with that obtained from a commercial instrument. The mechanical properties of another typical polydimethylsiloxane sample submerged in heptane are measured by using conical and spherical indenters, respectively. The measured values of shear modulus and Poisson's ratio are within a reasonable range.
文摘According to the inland micro electro-mechanical system (MEMS) process technique level, a design platform of piezoresistive micro electro-mechanical accelerometer is given. This platform is much more adaptable to the inland designer compared with the current MEMS CAD software. The design flow is presented in detail, and the key techique in the platform is analyzed amply. The structure design methodology is exemplified in the design of a piezoresistive accelerometer, and the accelerometer is the optimized structure for the given performance requirements. The accelerometer is now being manufactured.