A new process and technology of rapid prototyping for a μ-micro motor is presented as a nontraditional machining and an advanced manufacturing technology (AMT) to be realized by using masks, including the operation p...A new process and technology of rapid prototyping for a μ-micro motor is presented as a nontraditional machining and an advanced manufacturing technology (AMT) to be realized by using masks, including the operation principle of the motor, structure design, technique, driven circuit, and quality examination with Raman spectrum. The μ-micro motor is fabricated by the micro electro-mechanical systems (MEMS) process, the structure design must be considered to fabricate or assembly the parts during machining the motor in the meantime. The research proved that integration of IC (integrated circuit) process and MEMS using masks is effective in obtaining the rapid prototyping manufacturing of the μ-micro motor. With the mature technique to fabricate the motor, there are advantages to produce the motor in short time and with lower cost than before. The motor is a common power source of micro machines in military and civilian applications, for example, applied to micro robot, micro bio medicine, and micro machine. The size of the motor is 190 μm in maximum diameter by 125 μm in height that is bulk machined in array with the number of hundreds of micro motors on a substrate.展开更多
The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set betwee...The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set between the two stators make its design different, too. There are constraint satisfaction problems CSP) in the design. It is shown that the use GA offers a high rate of global convergence and the ability to get the optimal design of electromagnetic micro motors.展开更多
The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor a...The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor and further optimize the device geometry. The analytical torque model is obtained based on the principle of a planar variable-capacitance electrostatic motor while the viscous damping caused by air film between the stator and rotor is derived using laminar Couette flow model. Simulation results of the closed-loop drive motor, based on the developed dynamic model after eliminating mechanical friction torque via electrostatic suspension, are presented. The effects of the high-voltage drive, required for rotation of the rotor, on overload capacity and suspension stiffness of the electrostatic bearing system are also analytically evaluated in an effort to determine allowable drive voltage and attainable rotor speed in operation. The analytical results show that maximum speed of the micromotor is limited mainly by viscous drag torque and stiffness of the bearing system. Therefore, it is expected to operate the device in vacuum so as to increase the rotor speed significantly, especially for those electrostatically levitated micromotors to be used as an angular rate micro-gyroscope.展开更多
To investigate a novel macro and micro driven linear piezoelectric motor composed of an ultrasonic motor with macro movement and a piezoelectric actuator with micro movement,a digital signal processing(DSP)based macro...To investigate a novel macro and micro driven linear piezoelectric motor composed of an ultrasonic motor with macro movement and a piezoelectric actuator with micro movement,a digital signal processing(DSP)based macro and micro power supply is designed,which fits the new linear piezoelectric motor.The power supply comprises a control circuit,a voltage conversion circuit,an amplifier circuit,a half-bridge module,an optical isolatorsdrive circuit,etc,where the DSP of TMS320F28335 is used as the controller.When the linear piezoelectric motor working in a macro driven state,the power supply outputs alternating currents with high frequency and high voltage,which drives the linear piezoelectric motor dynamically at an ultrasonic frequency;while working in the micro driven state,the power supply outputs direct currents with high voltage,which drives the linear piezoelectric motor in micro driven statically.Here a prototype of the macro-micro power supply is designed.After a series of experiments on the power supply with and without loads,the results show that the power supply can drive and control the macro micro driven linear piezoelectric motor,and realizes quick and seamless switch between macro and micro drive.In addition,the power supply can drive and control the ultrasonic motor or piezoelectric ceramic micro actuator individually.The power supply achieves the multiple parameters of output signals adjustable simultaneously and exhibits good control characteristics.展开更多
In this work, a development of a method of a thin insulating film vertical edge visualization of metal-insulator-metal (MIM) memory cells with atomic force microscopy (AFM) using a modified Omicron UHV AFM/STM mic...In this work, a development of a method of a thin insulating film vertical edge visualization of metal-insulator-metal (MIM) memory cells with atomic force microscopy (AFM) using a modified Omicron UHV AFM/STM microscope was performed. This included a development of a technique of the AFM visualization of segments of a vertical edge of thin insulator SiO2 film structures on a conductive substrate, a comparison of AFM topography and current profilograms for the edge profiles, and an Omicron microscope custom upgrade. The latter allowed us to perform the AFM probe positioning to any specific area of the sample in the scanning plane by two coordinates with an order of precision of 1 micrometer. The method is illustrated with the experimental results of AFM investigations of the special MIM structures with comb-type topology, and of the cells of functioning memory matrices with 20 nm thin silicon dioxide film open edge perimeter and TiN lower electrode, including topography/current profilograms. As a conclusion, our ongoing work on the AFM visualization of a complete perimeter of a SiO2 open edge of memory cells with a special new topology with a goal to visualize conductive phase nanoparticles during switching processes is briefly overviewed.展开更多
基金Supported by Foundation of Department of Mechanical and Electrical Engineering of Xiamen University (No. Y03001)
文摘A new process and technology of rapid prototyping for a μ-micro motor is presented as a nontraditional machining and an advanced manufacturing technology (AMT) to be realized by using masks, including the operation principle of the motor, structure design, technique, driven circuit, and quality examination with Raman spectrum. The μ-micro motor is fabricated by the micro electro-mechanical systems (MEMS) process, the structure design must be considered to fabricate or assembly the parts during machining the motor in the meantime. The research proved that integration of IC (integrated circuit) process and MEMS using masks is effective in obtaining the rapid prototyping manufacturing of the μ-micro motor. With the mature technique to fabricate the motor, there are advantages to produce the motor in short time and with lower cost than before. The motor is a common power source of micro machines in military and civilian applications, for example, applied to micro robot, micro bio medicine, and micro machine. The size of the motor is 190 μm in maximum diameter by 125 μm in height that is bulk machined in array with the number of hundreds of micro motors on a substrate.
文摘The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set between the two stators make its design different, too. There are constraint satisfaction problems CSP) in the design. It is shown that the use GA offers a high rate of global convergence and the ability to get the optimal design of electromagnetic micro motors.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA04Z312)National Natural Science Foundation of China (Grant No. 50577036)
文摘The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor and further optimize the device geometry. The analytical torque model is obtained based on the principle of a planar variable-capacitance electrostatic motor while the viscous damping caused by air film between the stator and rotor is derived using laminar Couette flow model. Simulation results of the closed-loop drive motor, based on the developed dynamic model after eliminating mechanical friction torque via electrostatic suspension, are presented. The effects of the high-voltage drive, required for rotation of the rotor, on overload capacity and suspension stiffness of the electrostatic bearing system are also analytically evaluated in an effort to determine allowable drive voltage and attainable rotor speed in operation. The analytical results show that maximum speed of the micromotor is limited mainly by viscous drag torque and stiffness of the bearing system. Therefore, it is expected to operate the device in vacuum so as to increase the rotor speed significantly, especially for those electrostatically levitated micromotors to be used as an angular rate micro-gyroscope.
基金supported by the National Natural Science Foundation of China(No.51177053)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.2012CXZD0016)+1 种基金the Key Project of Department of Education of Guangdong Province(No.20124404110003)Guangzhou Science and Technology Project(No.201510010227)
文摘To investigate a novel macro and micro driven linear piezoelectric motor composed of an ultrasonic motor with macro movement and a piezoelectric actuator with micro movement,a digital signal processing(DSP)based macro and micro power supply is designed,which fits the new linear piezoelectric motor.The power supply comprises a control circuit,a voltage conversion circuit,an amplifier circuit,a half-bridge module,an optical isolatorsdrive circuit,etc,where the DSP of TMS320F28335 is used as the controller.When the linear piezoelectric motor working in a macro driven state,the power supply outputs alternating currents with high frequency and high voltage,which drives the linear piezoelectric motor dynamically at an ultrasonic frequency;while working in the micro driven state,the power supply outputs direct currents with high voltage,which drives the linear piezoelectric motor in micro driven statically.Here a prototype of the macro-micro power supply is designed.After a series of experiments on the power supply with and without loads,the results show that the power supply can drive and control the macro micro driven linear piezoelectric motor,and realizes quick and seamless switch between macro and micro drive.In addition,the power supply can drive and control the ultrasonic motor or piezoelectric ceramic micro actuator individually.The power supply achieves the multiple parameters of output signals adjustable simultaneously and exhibits good control characteristics.
文摘In this work, a development of a method of a thin insulating film vertical edge visualization of metal-insulator-metal (MIM) memory cells with atomic force microscopy (AFM) using a modified Omicron UHV AFM/STM microscope was performed. This included a development of a technique of the AFM visualization of segments of a vertical edge of thin insulator SiO2 film structures on a conductive substrate, a comparison of AFM topography and current profilograms for the edge profiles, and an Omicron microscope custom upgrade. The latter allowed us to perform the AFM probe positioning to any specific area of the sample in the scanning plane by two coordinates with an order of precision of 1 micrometer. The method is illustrated with the experimental results of AFM investigations of the special MIM structures with comb-type topology, and of the cells of functioning memory matrices with 20 nm thin silicon dioxide film open edge perimeter and TiN lower electrode, including topography/current profilograms. As a conclusion, our ongoing work on the AFM visualization of a complete perimeter of a SiO2 open edge of memory cells with a special new topology with a goal to visualize conductive phase nanoparticles during switching processes is briefly overviewed.