The effect of wall temperature on the characteristics of random combustion of micro organic particles with recirculation was investigated. The effect of recirculating in micro-combustors is noticeable, hence it is nec...The effect of wall temperature on the characteristics of random combustion of micro organic particles with recirculation was investigated. The effect of recirculating in micro-combustors is noticeable, hence it is necessary to present a model to describe the combustion process in these technologies. Recirculation phenomenon is evaluated by entering the exhausted heat from the post flam zone into the preheat zone. In this work, for modeling of random situation at the flame front, the source term in the equation of energy was modeled considering random situation for volatizing of particles in preheat zone. The comparison of obtained results from the proposed model by experimental data regards that the random model has a better agreement with experimental data than non-random model. Also, according to the results obtained by this model, wall temperature affects the amount of heat recirculation directly and higher values of wall temperature will lead to higher amounts of burning velocity and flame temperature.展开更多
Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the rece...Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the recent advances for organic micro/nanocrystals from the perspective of molecule aggregation mode,morphology modulation,and optical property modulation are reviewed.The stacking mode and the intermolecular interaction depend on the molecular structure,which eventually determines the morphology of organic micro/nanocrystals.The morphologies of the organic micro/nanocrystals make the aggregates exhibit photon confinement or light-guiding properties as organic miniaturized optoelectronic devices.In this review,we conclude with a summary and put forward our perspective on the current challenges and the future development of morphology and optical tunable direction for the organic micro/nanocrystals.展开更多
CeO2 is an important porous material with a wide range of applications in the abatement of volatile organic compounds (VOCs). In this paper, we prepared a series of novel three-dimensional (3D) micro/nanostructure...CeO2 is an important porous material with a wide range of applications in the abatement of volatile organic compounds (VOCs). In this paper, we prepared a series of novel three-dimensional (3D) micro/nanostructured CeO2 materials via a solvothermal method. Organic acid-assisted synthesis and inorganic acid post-treatment were used to adjust the Ce02 microstructures. The size of the 3D micro/nanostructures could be controlled in the range from 180nm to 1.5 μm and the surface morphology changed from rough to smooth with the use of different organic acids. The CeO2 synthesized with acetic acid featured a hierarchical porosity and showed good performance for toluene catalytic combustion: a T50 of 187 ℃ and a T90 of 195 ℃. Moreover, the crystallite size, textural properties, and surface chemical states could be tuned by inorganic acid modification. After treatment with HNO3, the modified CeO2 materials exhibited improved catalytic activity, with a T50 of-175 ℃ and a T90 of -187 ℃. We concluded that the toluene combustion activity is related to the porosity and the amount of surface active oxygen of the CeO2. Both these features can be tuned by the co-work of organic and inorganic acids.展开更多
Optical waveguide of organic micro/nanocrystals is one of crucial elements in miniaturized integrated photonics.One-dimensional(1D)organic crystals with various optical features have attracted increasing interests tow...Optical waveguide of organic micro/nanocrystals is one of crucial elements in miniaturized integrated photonics.One-dimensional(1D)organic crystals with various optical features have attracted increasing interests towards promising photonic devices,such as multichannel signal converter,organic field-effect optical waveguide,sensitive detector,and optical logic gate.Therefore,a summary about the 1D organic micro/nanocrystals based optical waveguide is important for the rational design and fabrication of novel optical devices towards optoelectronics applications.Herein,recent advances of optical waveguide based on 1D organic micro/nanocrystals with solid,flexible,hollow,uniformly doped,core-shell,multiblock and branched structures are summarized from the aspects of the waveguide properties and applications in photonic devices.Furthermore,we presented our personal view about the expectation of future development in 1D organic optical waveguide for the photonic applications.展开更多
文摘The effect of wall temperature on the characteristics of random combustion of micro organic particles with recirculation was investigated. The effect of recirculating in micro-combustors is noticeable, hence it is necessary to present a model to describe the combustion process in these technologies. Recirculation phenomenon is evaluated by entering the exhausted heat from the post flam zone into the preheat zone. In this work, for modeling of random situation at the flame front, the source term in the equation of energy was modeled considering random situation for volatizing of particles in preheat zone. The comparison of obtained results from the proposed model by experimental data regards that the random model has a better agreement with experimental data than non-random model. Also, according to the results obtained by this model, wall temperature affects the amount of heat recirculation directly and higher values of wall temperature will lead to higher amounts of burning velocity and flame temperature.
基金supported by the National Natural Science Foundation of China(21971185)the Collaborative Innovation Center of Suzhou Nano Science and Technology(CIC-Nano)the"111"Project of The State Administration of Foreign Experts Affairs of China。
文摘Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the recent advances for organic micro/nanocrystals from the perspective of molecule aggregation mode,morphology modulation,and optical property modulation are reviewed.The stacking mode and the intermolecular interaction depend on the molecular structure,which eventually determines the morphology of organic micro/nanocrystals.The morphologies of the organic micro/nanocrystals make the aggregates exhibit photon confinement or light-guiding properties as organic miniaturized optoelectronic devices.In this review,we conclude with a summary and put forward our perspective on the current challenges and the future development of morphology and optical tunable direction for the organic micro/nanocrystals.
基金This work was financially supported by the Natural Science Foundation of China (21576054), the Scientific Project of Guangdong Province (2014A010106030, 2016A010104017,2016B020241003), and the Foundation of Higher Education of Guangdong Province (201 SICFSCX027) of China.
文摘CeO2 is an important porous material with a wide range of applications in the abatement of volatile organic compounds (VOCs). In this paper, we prepared a series of novel three-dimensional (3D) micro/nanostructured CeO2 materials via a solvothermal method. Organic acid-assisted synthesis and inorganic acid post-treatment were used to adjust the Ce02 microstructures. The size of the 3D micro/nanostructures could be controlled in the range from 180nm to 1.5 μm and the surface morphology changed from rough to smooth with the use of different organic acids. The CeO2 synthesized with acetic acid featured a hierarchical porosity and showed good performance for toluene catalytic combustion: a T50 of 187 ℃ and a T90 of 195 ℃. Moreover, the crystallite size, textural properties, and surface chemical states could be tuned by inorganic acid modification. After treatment with HNO3, the modified CeO2 materials exhibited improved catalytic activity, with a T50 of-175 ℃ and a T90 of -187 ℃. We concluded that the toluene combustion activity is related to the porosity and the amount of surface active oxygen of the CeO2. Both these features can be tuned by the co-work of organic and inorganic acids.
基金The National Natural Science Foundation of China(Nos.21703148 and 21971185)the Natural Science Foundation of Jiangsu Province(BK20170330).
文摘Optical waveguide of organic micro/nanocrystals is one of crucial elements in miniaturized integrated photonics.One-dimensional(1D)organic crystals with various optical features have attracted increasing interests towards promising photonic devices,such as multichannel signal converter,organic field-effect optical waveguide,sensitive detector,and optical logic gate.Therefore,a summary about the 1D organic micro/nanocrystals based optical waveguide is important for the rational design and fabrication of novel optical devices towards optoelectronics applications.Herein,recent advances of optical waveguide based on 1D organic micro/nanocrystals with solid,flexible,hollow,uniformly doped,core-shell,multiblock and branched structures are summarized from the aspects of the waveguide properties and applications in photonic devices.Furthermore,we presented our personal view about the expectation of future development in 1D organic optical waveguide for the photonic applications.