Micro-aftershocks with magnitude range of 1.5--4 around the Wenchuan earthquake epicenter, the southern part of the Longmenshan fault zone, exhibit good frequency-magnitude linear relationships, thus enabling b-value ...Micro-aftershocks with magnitude range of 1.5--4 around the Wenchuan earthquake epicenter, the southern part of the Longmenshan fault zone, exhibit good frequency-magnitude linear relationships, thus enabling b-value analysis. The average b-value for micro-aflershocks of M1.5-4 from July to December of 2008 in our local study region is about 0.88, similar to the b-value for all aftershocks ofM3.0-5.5 from May, 2008 to May, 2009 along the whole Longmenshan fault zone. The similarity between the local and regional b-values possibly indicates that the southern part of the Longmenshan fault zone has similar seismogenic environment to the whole Longmenshan fault zone. Alternatively, it may also imply that b-values derived from all events without consideration of structural variation can not discriminate local-scale tectonic information. The present study shows that the b-value for the Wenchuan earthquake micro-aftershocks varies with different regions. The b-value in southwest of the Yingxiu town is higher than that in the northeast of the Yingxiu town. The high b-value in the southwest part where the Wenchuan earthquake main shock hypocenter located indicates that the current stress around the hypocenter region is much lower than its surrounding area. The b-values are also dependent on depth. At shallow depths of 〈5 km, the b-values are very small (-0.4), possibly being related to strong wave attenuation or strong heterogeneity in shallow layers with high content of porosity and fractures. At depths of-5-11 km, where most aftershocks concentrated, the b-values become as high as -0.9-1.0. At the depth below -11 km, the b-values decrease with the depth increasing, being consistent with increasing tectonic homogeneity and increasing stress with depth.展开更多
The morphology and distribution of VC precipitates in HSLA steel as well as the orientation relationship between VC precipitate and α-Fe were studied by transmission electron microscopy (TEM). The chemical composit...The morphology and distribution of VC precipitates in HSLA steel as well as the orientation relationship between VC precipitate and α-Fe were studied by transmission electron microscopy (TEM). The chemical composition of the VC precipitate was analyzed qualitatively by using analytical electron microscopy (AEM) equipped with an energy dispersive spectrum (EDS) system. The VC precipitate is needle-like in shape with a size of about 10 nm in length and is homogeneously dispersed in the α-Fe matrix. The smaller lattice misfit along the 〈100〉 lattice direction of α-Fe matrix leads to VC precipitate forming with its long axes nearly parallel to the 〈100〉 lattice direction of α-Fe matrix. It is confirmed that the orientation relationship between VC precipitate and α- Fe is the "N-W" orientation relation by selected area electron diffraction (SAED) patterns.展开更多
Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dro...Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dropΔσof 75.95 bars,quality factor parameters Q0of 186.33 andηof 0.26,geometric attenuation parameters R1of 72.18km and R2of 139.70km.We calculate the Fourier spectrum and combine it with the random phase spectrum to get the ground motion time history,and build the strong motion acceleration attenuation relationship.The strong ground motion acceleration attenuation of the Pishan area is thus obtained.Because of the insufficiency of strong ground motion records,we added the records from the Wuqia MS6.9 earthquake on October 5,2008,the Akto MS6.2 earthquake on October 6,2008,and the Lop MS6.0 earthquake on March 9,2012 to the data.The comparison of the calculation results and the empirical attenuation relationships with strong ground motion records reveal that the strong motion data of Pishan and Lop earthquakes is higher than the empirical attenuation relationships.The Wuqia MS6.9 earthquake strong motion data is consistent with Yu Yanxiangs(2013)short axis result,and lower than the present result.展开更多
This study evaluates the improvement of the radar Quantitative Precipitation Estimation (QPE) by involving microphysical processes in the determination of </span><i><span style="font-family:Verdana...This study evaluates the improvement of the radar Quantitative Precipitation Estimation (QPE) by involving microphysical processes in the determination of </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms. Within the framework of the AMMA campaign, measurements of an X-band radar (Xport), a vertical pointing Micro Rain Radar (MRR) to investigate microphysical processes and a dense network of rain </span><span style="font-family:Verdana;">gauges deployed in Northern Benin (West Africa) in 2006 and 2007 were</span><span style="font-family:Verdana;"> used as support to establish such estimators and evaluate their performance compared to other estimators in the literature. By carefully considering and correcting MRR attenuation and calibration issues, the </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> estimator developed </span><span style="font-family:Verdana;">with the contribution of microphysical processes and non-linear least</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">squares adjustment proves to be more efficient for quantitative rainfall estimation and produces the best statistic scores than other optimal </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms in the literature. We also find that it gives results comparable to some polarimetric algorithms including microphysical information through DSD integrated parameter retrievals.展开更多
Numerous experimental evidences show that the grain size may significantly alter the yield strength of metals.Similarly,innickel-based superalloys,the precipitate size also influences their yield strength.Then,how to ...Numerous experimental evidences show that the grain size may significantly alter the yield strength of metals.Similarly,innickel-based superalloys,the precipitate size also influences their yield strength.Then,how to describe such two kinds of size effects on the yield strength is a very practical challenge.In this study,according to experimental observations,a collinear micro-shear-bands model is proposed to explore these size effects on metal materials’yield strength.An analytical solution for the simple model is derived.It reveals that the yield strength is a function of average grain-size or precipitate-size,which is able to reasonably explain size effects on yield strength.The typical example validation shows that the new relationship is not only able to precisely describe the grain-size effect in some cases,but also able to theoretically address the unexplained Hall-Petch relationship between theprecipitate size and the yield strength of nickel-based superalloys.展开更多
基金supported bythe Basic Research Foundation of the Institute of Ge-omechanics,Chinese Academy of Geological Sciences(No.DZLXJK200707)the National Natural Science Foundation of China(No.40674058)
文摘Micro-aftershocks with magnitude range of 1.5--4 around the Wenchuan earthquake epicenter, the southern part of the Longmenshan fault zone, exhibit good frequency-magnitude linear relationships, thus enabling b-value analysis. The average b-value for micro-aflershocks of M1.5-4 from July to December of 2008 in our local study region is about 0.88, similar to the b-value for all aftershocks ofM3.0-5.5 from May, 2008 to May, 2009 along the whole Longmenshan fault zone. The similarity between the local and regional b-values possibly indicates that the southern part of the Longmenshan fault zone has similar seismogenic environment to the whole Longmenshan fault zone. Alternatively, it may also imply that b-values derived from all events without consideration of structural variation can not discriminate local-scale tectonic information. The present study shows that the b-value for the Wenchuan earthquake micro-aftershocks varies with different regions. The b-value in southwest of the Yingxiu town is higher than that in the northeast of the Yingxiu town. The high b-value in the southwest part where the Wenchuan earthquake main shock hypocenter located indicates that the current stress around the hypocenter region is much lower than its surrounding area. The b-values are also dependent on depth. At shallow depths of 〈5 km, the b-values are very small (-0.4), possibly being related to strong wave attenuation or strong heterogeneity in shallow layers with high content of porosity and fractures. At depths of-5-11 km, where most aftershocks concentrated, the b-values become as high as -0.9-1.0. At the depth below -11 km, the b-values decrease with the depth increasing, being consistent with increasing tectonic homogeneity and increasing stress with depth.
基金This work was financially supported by the National Natural Science Foundation of China (No.59971008).
文摘The morphology and distribution of VC precipitates in HSLA steel as well as the orientation relationship between VC precipitate and α-Fe were studied by transmission electron microscopy (TEM). The chemical composition of the VC precipitate was analyzed qualitatively by using analytical electron microscopy (AEM) equipped with an energy dispersive spectrum (EDS) system. The VC precipitate is needle-like in shape with a size of about 10 nm in length and is homogeneously dispersed in the α-Fe matrix. The smaller lattice misfit along the 〈100〉 lattice direction of α-Fe matrix leads to VC precipitate forming with its long axes nearly parallel to the 〈100〉 lattice direction of α-Fe matrix. It is confirmed that the orientation relationship between VC precipitate and α- Fe is the "N-W" orientation relation by selected area electron diffraction (SAED) patterns.
基金jointly sponsored by “The Ground Motion Attenuation Relationship Based on Seismology and Its Practicability” of the National Natural Science Foundation of China(51178434)“With Digital Ride Network Small Earthquake Records to Establish Regional Strong Ground Motion Attenuation Relations”from the National Natural Science Foundation of China(51478443)“Based on the Regional Parameters of Mixed Ground Motion Attenuation Relationship”from the National Natural Science Foundation of China(51678540)
文摘Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dropΔσof 75.95 bars,quality factor parameters Q0of 186.33 andηof 0.26,geometric attenuation parameters R1of 72.18km and R2of 139.70km.We calculate the Fourier spectrum and combine it with the random phase spectrum to get the ground motion time history,and build the strong motion acceleration attenuation relationship.The strong ground motion acceleration attenuation of the Pishan area is thus obtained.Because of the insufficiency of strong ground motion records,we added the records from the Wuqia MS6.9 earthquake on October 5,2008,the Akto MS6.2 earthquake on October 6,2008,and the Lop MS6.0 earthquake on March 9,2012 to the data.The comparison of the calculation results and the empirical attenuation relationships with strong ground motion records reveal that the strong motion data of Pishan and Lop earthquakes is higher than the empirical attenuation relationships.The Wuqia MS6.9 earthquake strong motion data is consistent with Yu Yanxiangs(2013)short axis result,and lower than the present result.
文摘This study evaluates the improvement of the radar Quantitative Precipitation Estimation (QPE) by involving microphysical processes in the determination of </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms. Within the framework of the AMMA campaign, measurements of an X-band radar (Xport), a vertical pointing Micro Rain Radar (MRR) to investigate microphysical processes and a dense network of rain </span><span style="font-family:Verdana;">gauges deployed in Northern Benin (West Africa) in 2006 and 2007 were</span><span style="font-family:Verdana;"> used as support to establish such estimators and evaluate their performance compared to other estimators in the literature. By carefully considering and correcting MRR attenuation and calibration issues, the </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> estimator developed </span><span style="font-family:Verdana;">with the contribution of microphysical processes and non-linear least</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">squares adjustment proves to be more efficient for quantitative rainfall estimation and produces the best statistic scores than other optimal </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms in the literature. We also find that it gives results comparable to some polarimetric algorithms including microphysical information through DSD integrated parameter retrievals.
基金supported by the National Natural Science Foundation of China (41630634)the China Postdoctoral Science Foundation (2017M623213)
文摘Numerous experimental evidences show that the grain size may significantly alter the yield strength of metals.Similarly,innickel-based superalloys,the precipitate size also influences their yield strength.Then,how to describe such two kinds of size effects on the yield strength is a very practical challenge.In this study,according to experimental observations,a collinear micro-shear-bands model is proposed to explore these size effects on metal materials’yield strength.An analytical solution for the simple model is derived.It reveals that the yield strength is a function of average grain-size or precipitate-size,which is able to reasonably explain size effects on yield strength.The typical example validation shows that the new relationship is not only able to precisely describe the grain-size effect in some cases,but also able to theoretically address the unexplained Hall-Petch relationship between theprecipitate size and the yield strength of nickel-based superalloys.