The visualization and data mining of tumor multidimensional information may play a major role in the analysis of the growth,metastasis,and microenvironmental changes of tumors while challenging traditional imaging and...The visualization and data mining of tumor multidimensional information may play a major role in the analysis of the growth,metastasis,and microenvironmental changes of tumors while challenging traditional imaging and data processing techniques.In this study,a general trans-scale and multi-modality measurement method was developed for the quantitative diagnosis of hepatocellular carcinoma(HCC)using a combination of propagation-based phase-contrast computed tomography(PPCT),scanning transmission soft X-ray microscopy(STXM),and Fourier transform infrared micro-spectroscopy(FTIR).Our experimental results reveal the trans-scale micro-morpho-logical HCC pathology and facilitate quantitative data analysis and comprehensive assessment.These results include some visualization features of PPCT-based tissue microenvironments,STXM-based cellular fine structures,and FTIR-based bio-macromolecular spectral characteris-tics during HCC tumor differentiation and proliferation.The proposed method provides multidimensional feature data support for constructing a high-accuracy machine learning algorithm based on a gray-level histogram,gray-gradient co-occurrence matrix,gray-level co-occurrence matrix,and back-propagation neural network model.Multi-dimensional information analysis and diagnosis revealed the morphological pathways of HCC pathological evolution and we explored the relationships between HCC-related feature changes in inflammatory microenviron-ments,cellular metabolism,and the stretching vibration peaks of biomolecules of lipids,proteins,and nucleic acids.Therefore,the proposed methodology has strong potential for the visualization of complex tumors and assessing the risks of tumor differentiation and metastasis.展开更多
The corrosion behavior of zinc and its alloy under thin electrolyte layers (TEL) in 0.1M NaC1 solution was investigated by cathodic polarization curves and EIS. There was only one phase in pure zinc while zinc alloy...The corrosion behavior of zinc and its alloy under thin electrolyte layers (TEL) in 0.1M NaC1 solution was investigated by cathodic polarization curves and EIS. There was only one phase in pure zinc while zinc alloy consisted of eutectic phase and primary phase. Corrosion rate of zinc alloy was faster than that of pure zinc due to the effect of the micro-galvanic couples between the primary phase and the eutectic phase. The results indicated that corrosion rate of zinc alloy was greatly enhanced under TEL than that in bulk solution. Pure zinc exhibited minimum corrosion resistance as TEL decreased to 198 #m. Zinc and its alloy exhibited localized corrosion under TEL while it was more uniform in bulk solution. There were two capacitive loops in high frequency (HF) and middle frequency (MF) respectively, with finite length diffusion in low frequency (LF) presented in EIS. For pure zinc under TEL below 300 pm an additional inductive loop presented in MF-LF. The corrosion products and morphology were respectively examined by X-ray diffraction (XRD), FTIR (Fourier Transform Infra Red) and SEM-EDS. FTIR micro spectroscopy results indicated that the component of the corrosion products was similar at different section of the specimen surface but different in content.展开更多
Immediately after the demonstration of the high-quality electronic properties in various two dimensional(2D)van der Waals(vdW)crystals fabricated with mechanical exfoliation,many methods have been reported to explore ...Immediately after the demonstration of the high-quality electronic properties in various two dimensional(2D)van der Waals(vdW)crystals fabricated with mechanical exfoliation,many methods have been reported to explore and control large scale fabrications.Comparing with recent advancements in fabricating 2D atomic layered crystals,large scale production of one dimensional(1D)nanowires with thickness approaching molecular or atomic level still remains stagnant.Here,we demonstrate the high yield production of a 1D vdW material,semiconducting Ta2Pd3Se8 nanowires,by means of liquid-phase exfoliation.The thinnest nanowire we have readily achieved is around 1 nm,corresponding to a bundle of one or two molecular ribbons.Transmission electron microscopy(TEM)and transport measurements reveal the as-fabricated Ta2Pd3Se8 nanowires exhibit unexpected high crystallinity and chemical stability.Our low-frequency Raman spectroscopy reveals clear evidence of the existing of weak inter-ribbon bindings.The fabricated nanowire transistors exhibit high switching performance and promising applications for photodetectors.展开更多
基金supported by the Natural Science Foundation of Shandong Province,China(No.ZR2020MA088)Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(No.2019D01C188)+1 种基金National Key Research and Development Program of China(No.2018YFC1200204)National Natural Science Foundation of China(No.12175127).
文摘The visualization and data mining of tumor multidimensional information may play a major role in the analysis of the growth,metastasis,and microenvironmental changes of tumors while challenging traditional imaging and data processing techniques.In this study,a general trans-scale and multi-modality measurement method was developed for the quantitative diagnosis of hepatocellular carcinoma(HCC)using a combination of propagation-based phase-contrast computed tomography(PPCT),scanning transmission soft X-ray microscopy(STXM),and Fourier transform infrared micro-spectroscopy(FTIR).Our experimental results reveal the trans-scale micro-morpho-logical HCC pathology and facilitate quantitative data analysis and comprehensive assessment.These results include some visualization features of PPCT-based tissue microenvironments,STXM-based cellular fine structures,and FTIR-based bio-macromolecular spectral characteris-tics during HCC tumor differentiation and proliferation.The proposed method provides multidimensional feature data support for constructing a high-accuracy machine learning algorithm based on a gray-level histogram,gray-gradient co-occurrence matrix,gray-level co-occurrence matrix,and back-propagation neural network model.Multi-dimensional information analysis and diagnosis revealed the morphological pathways of HCC pathological evolution and we explored the relationships between HCC-related feature changes in inflammatory microenviron-ments,cellular metabolism,and the stretching vibration peaks of biomolecules of lipids,proteins,and nucleic acids.Therefore,the proposed methodology has strong potential for the visualization of complex tumors and assessing the risks of tumor differentiation and metastasis.
基金supported by National Natural Science Foundation of China(Nos.50801056 and J0830413)the National R&D Infrastructure and Facility Development Program of China (No.2005DKA10400-Z20)the Zijin Project of Zhejiang University
文摘The corrosion behavior of zinc and its alloy under thin electrolyte layers (TEL) in 0.1M NaC1 solution was investigated by cathodic polarization curves and EIS. There was only one phase in pure zinc while zinc alloy consisted of eutectic phase and primary phase. Corrosion rate of zinc alloy was faster than that of pure zinc due to the effect of the micro-galvanic couples between the primary phase and the eutectic phase. The results indicated that corrosion rate of zinc alloy was greatly enhanced under TEL than that in bulk solution. Pure zinc exhibited minimum corrosion resistance as TEL decreased to 198 #m. Zinc and its alloy exhibited localized corrosion under TEL while it was more uniform in bulk solution. There were two capacitive loops in high frequency (HF) and middle frequency (MF) respectively, with finite length diffusion in low frequency (LF) presented in EIS. For pure zinc under TEL below 300 pm an additional inductive loop presented in MF-LF. The corrosion products and morphology were respectively examined by X-ray diffraction (XRD), FTIR (Fourier Transform Infra Red) and SEM-EDS. FTIR micro spectroscopy results indicated that the component of the corrosion products was similar at different section of the specimen surface but different in content.
基金This work is supported by the United States Department of Energy under Grant DE-SC0014208by The National Science Foundation under Grant 1752997.We acknowledge the Coordinated Instrument Facility(CIF)of Tulane University for the support of various instruments.P.B.S.and L.Y.A.(theoretical calculations)were supported by the Russian Science Foundation(No.17-72-20223)+1 种基金We are grateful to the supercomputer cluster provided by the Materials Modelling and Development Laboratory at NUST“MISIS”(supported via the Grant from the Ministry of Education and Science of the Russian Federation No.14.Y26.31.0005)to the Joint Supercomputer Center of the Russian Academy of Sciences.
文摘Immediately after the demonstration of the high-quality electronic properties in various two dimensional(2D)van der Waals(vdW)crystals fabricated with mechanical exfoliation,many methods have been reported to explore and control large scale fabrications.Comparing with recent advancements in fabricating 2D atomic layered crystals,large scale production of one dimensional(1D)nanowires with thickness approaching molecular or atomic level still remains stagnant.Here,we demonstrate the high yield production of a 1D vdW material,semiconducting Ta2Pd3Se8 nanowires,by means of liquid-phase exfoliation.The thinnest nanowire we have readily achieved is around 1 nm,corresponding to a bundle of one or two molecular ribbons.Transmission electron microscopy(TEM)and transport measurements reveal the as-fabricated Ta2Pd3Se8 nanowires exhibit unexpected high crystallinity and chemical stability.Our low-frequency Raman spectroscopy reveals clear evidence of the existing of weak inter-ribbon bindings.The fabricated nanowire transistors exhibit high switching performance and promising applications for photodetectors.