A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods....A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.展开更多
Mesoporous high‐silica zeolite Y with advantages of improved accessibility of acid sites and mass transport properties is highly desired catalytic materials for oil refinery,fine chemistry and emerg‐ing biorefinery....Mesoporous high‐silica zeolite Y with advantages of improved accessibility of acid sites and mass transport properties is highly desired catalytic materials for oil refinery,fine chemistry and emerg‐ing biorefinery.Here,we report the direct synthesis of mesoporous high‐silica zeolite Y(named MSY,SiO_(2)/Al2O_(3)≥9.8)and their excellent catalytic cracking performance.The obtained MSY mate‐rials are mesoporous single crystals with octahedral morphology,abundant mesoporosity and ex‐cellent(hydro)thermal stability.Both the acid concentration and acid strength of H‐form MSY are obviously higher than those of commercial ultra‐stable Y(USY),which should be attributed to the uniform Al distribution of MSY zeolite.The H‐MSY displays an obviously reduced deactivation rate and improved catalytic activity in the cracking reaction of bulky 1,3,5‐triisopropylbenzene(TIPB),as compared with its mesoporogen‐free counterpart and USY.In addition,H‐MSY was investigated as catalyst for the cracking of industrial heavy oil.The MSY‐based catalyst(after aging at 800 oC in 100%steam for 17 h)exhibits superior conversion(7.64%increase)and gasoline yield(16.37%increase)than industrial fluid catalytic cracking(FCC)catalyst under the investigated conditions.展开更多
Composite structures of ZSM‐5 zeolites were prepared by the synthesis of mesopores and mi‐cropores using carbon nanotubes as a template. Dealumination of mesopores was performed selec‐tively using trichloroacetic a...Composite structures of ZSM‐5 zeolites were prepared by the synthesis of mesopores and mi‐cropores using carbon nanotubes as a template. Dealumination of mesopores was performed selec‐tively using trichloroacetic acid, which could only diffuse into the mesopores and not the mi‐cropores owing to the size of the trichloroacetic acid molecules. Empty spaces are created in the catalyst as a result of removal of the Al atoms from the zeolite structure. If Si atoms fill the empty space, then the structure of the mesopores becomes similar to silicates, which do not have any cata‐lytic properties. Silicon containing solution was used to fill the empty spaces, and in doing so, a unique method was developed, by which silicon atoms can directly replace the extracted Al atoms from the mesopore structure. Therefore, by changing the geometry and properties of the mesopores and micropores, the amount of coke reduced from 14%for HZSM‐5 to 3%for the modified zeolite.展开更多
The effects of the initial framework SiO2/Al2O3 ratio and temperature on the structural changes of NaY zeolites during hydrothermal treatments are studied. Two samples with different framework SiO2/Al2O3 ratios are ...The effects of the initial framework SiO2/Al2O3 ratio and temperature on the structural changes of NaY zeolites during hydrothermal treatments are studied. Two samples with different framework SiO2/Al2O3 ratios are subjected to hydrothermal treatment at four different temperatures. For zeolite with a lower initial SiO2/Al2O3 ratio of 4.2, mesopores are easily formed because more framework aluminum is detached. Moreover, two kinds of mesopores are produced at a higher temperature due to the interconnection of vacancies and smaller mesopores. For zeolite with a higher initial SiO2/Al2O3 ratio of 6.0, there are less mesopores formed as compared with the lower initial SiO2/Al2O3 ratio sample, but there are some macropores formed. This may be attributed to the isolation of vacancies and the different distributions of aluminum in the crystal lattice of the zeolite. The experiment data show that NaY with the SiO2/Al2O3 ratio of 6.0 retains a high relative crystallinity during the hydrothermal treatment. This proves that a high framework SiO2/Al2O3 ratio benefits the stability of zeolite.展开更多
Hierarchical nanoporous HY zeolites were synthesized from acid-activated kaolin. The hierarchical factor (HF) was maximized by varying the aging and crystallization time. This was achieved by maximizing the external...Hierarchical nanoporous HY zeolites were synthesized from acid-activated kaolin. The hierarchical factor (HF) was maximized by varying the aging and crystallization time. This was achieved by maximizing the external surface area without greatly reducing the micropore volume. The resulting products were characterized using X-ray diffraction (XRD), X-ray fluorescence, N2 adsorption, and NH3 temperature-programmed desorption. The nanoporous HY zeolite with the highest HF was obtained by aging for 48 h and a crystallization time of 24 h. The acidiW and crystallinity varied depending on the operating parameters. Incorporation of an appropriate amount of NaCI was also vital in maximizing the HF, crystallinity, and acidity. The sample crystallinities were determined by comparing their XRD peak intensities with those of a conventional Y zeolite. The results show that optimizing this process could lead to a widely acceptable commercial route for FIY zeolite production.展开更多
The pore sizes of traditional zeolites are in the range of0. 3-1. 5 nm,which strongly hinder the diffusion of large reactant and product molecules within the zeolite pores. To compensate for it,we tried to create meso...The pore sizes of traditional zeolites are in the range of0. 3-1. 5 nm,which strongly hinder the diffusion of large reactant and product molecules within the zeolite pores. To compensate for it,we tried to create mesopores in traditional microporous zeolites and retain all advantages of microporous zeolites. Mesoporous Zeolite Socony Mobile-Five( ZSM-5) zeolite was synthesized by a new double ester base long carbon chains organosilane quaternary ammonium salt as the soft template agent in hydrothermal method.The structure of the acquired zeolite crystals was confirmed by fieldemission scanning electron microscopy( FE-SEM), transmission electron microscopy( TEM), nitrogen adsorption-desorption measurements and X-ray diffraction( XRD),which indicated that their structure had the same characteristics as traditional ZSM-5 zeolites. Compared with traditional ZSM-5 zeolite,there were 4 nm and 15 nm mesopores in the crystal. The prepared hierarchical porous ZSM-5 zeolite was expected to be effective catalytic materials for chemical reactions involving large molecules.展开更多
In the process of toluene adsorption, the choice of adsorbent is the key. In this work, micro-mesoporous carbon materials were prepared and characterized. The synthesis process was performed by using MCM-41 as the tem...In the process of toluene adsorption, the choice of adsorbent is the key. In this work, micro-mesoporous carbon materials were prepared and characterized. The synthesis process was performed by using MCM-41 as the template, and sucrose and furfuryl alcohol as the carbon source, respectively. The toluene adsorption capacity of studied adsorbents was evaluated under different toluene initial concentration, temperature and bed height. In order to further improve the adsorption capacity, nitric acid was used for modification of the selected adsorbent. The adsorption performance after modification was also investigated. The prepared carbon materials were characteristic of typical type IV isotherms and pore size distribution was focused on micropores and mesopores. Compared with MCM-41, the prepared carbon materials showed high toluene adsorption capacity. After modification the specific surface area and oxygen groups of adsorbent were increased, making the adsorption capacity increase from 185.3 mg/g to a maximum value of 514.7 mg/g. The adsorption capacity of adsorbent mainly depended on its surface area and surface chemical property.展开更多
Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-contai...Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-containing mesoporous materials have been reviewed. Various strategies for the preparation of Ti-containing mesoporous materials, such as direct synthesis and post-synthesis, are described. Modifications of Ti-containing mesoporous materials by surface-grafting and atom-planting are also discussed. All approaches aimed mainly at the improving of the stability, the hydrophobicity, and mostly the catalytic activity. Structural and mechanistic features of various synthetic systems are discussed. Ticontaining mesoporous materials in liquid phase catalytic oxidation of organic compounds with H2O2 as an oxidant is briefly summarized, showing their broad utilities for green synthesis of fine chemicals by catalytic oxidative reactions.展开更多
The mesoporous Al-SBA-15 zeolite was obtained via impregnation of pure silica-based SBA-15 zeolite with aluminum nitrate.The Al-SBA-15 sample was calcined in air at 800 ℃ for 6 h and hydrothermally treated at near 1...The mesoporous Al-SBA-15 zeolite was obtained via impregnation of pure silica-based SBA-15 zeolite with aluminum nitrate.The Al-SBA-15 sample was calcined in air at 800 ℃ for 6 h and hydrothermally treated at near 100 ℃ for 120 h,respectively,and then the thermal and hydrothermal stability of Al-SBA-15 sample was investigated by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and nitrogen adsorption and desorption techniques.The Al-SBA-15 sample was also studied by 27 Al nuclear magnetic resonance (27 Al NMR) and ammonia temperature programmed desorption (NH 3-TPD) techniques.In addition,the catalytic activity of Al-SBA-15 zeolite was investigated by the Friedel-Crafts reactions of 2,4-di-tert-butylphenol with cinnamyl alcohol.The test results showed that the thermal and hydrothermal stability of Al-SBA-15 zeolite was better than that of SBA-15 zeo-lite.The Al-SBA-15 zeolite sample prepared by impregnation method exhibits more framework aluminum species and Al-O-Si units.Therefore,the number of the surface hydroxyl groups was reduced,resulting in the stabilization of framework structure ofAl-SBA-15 zeolite.The aluminum species can form weak and medium-strong acid sites with catalytic activity.展开更多
Two mixed-matrix NiMo/Al2O3 catalysts containing nano-and micro-sized zeolite Y have been prepared to explore the size effect of zeolite Y particle on the hydrodesulfurization(HDS)and hydrodenitrogenation(HDN)acti...Two mixed-matrix NiMo/Al2O3 catalysts containing nano-and micro-sized zeolite Y have been prepared to explore the size effect of zeolite Y particle on the hydrodesulfurization(HDS)and hydrodenitrogenation(HDN)activities of fluid catalytic cracking(FCC)diesel.They were characterized by SEM,BET,XRD,H2-TPR,NH3-TPD and HRTEM.The results show that the catalyst containing nano-sized zeolite Y possesses larger average pore diameter,higher pore volume,weaker and lesser acid sites,more easily reducible metal phases,shorter MoS2 slabs and more slab layers than the catalyst containing micro-sized zeolite Y.The catalysts were also evaluated with a high-pressure fixed-bed reactor using real FCC diesel as feed.The results display that the catalyst containing nano-sized zeolite Y bears higher HDS and HDN activities and exhibits higher relative rate constant for the removal of total sulfur or nitrogen than the one containing micro-sized zeolite.展开更多
文摘A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.
文摘Mesoporous high‐silica zeolite Y with advantages of improved accessibility of acid sites and mass transport properties is highly desired catalytic materials for oil refinery,fine chemistry and emerg‐ing biorefinery.Here,we report the direct synthesis of mesoporous high‐silica zeolite Y(named MSY,SiO_(2)/Al2O_(3)≥9.8)and their excellent catalytic cracking performance.The obtained MSY mate‐rials are mesoporous single crystals with octahedral morphology,abundant mesoporosity and ex‐cellent(hydro)thermal stability.Both the acid concentration and acid strength of H‐form MSY are obviously higher than those of commercial ultra‐stable Y(USY),which should be attributed to the uniform Al distribution of MSY zeolite.The H‐MSY displays an obviously reduced deactivation rate and improved catalytic activity in the cracking reaction of bulky 1,3,5‐triisopropylbenzene(TIPB),as compared with its mesoporogen‐free counterpart and USY.In addition,H‐MSY was investigated as catalyst for the cracking of industrial heavy oil.The MSY‐based catalyst(after aging at 800 oC in 100%steam for 17 h)exhibits superior conversion(7.64%increase)and gasoline yield(16.37%increase)than industrial fluid catalytic cracking(FCC)catalyst under the investigated conditions.
基金partly supported by the International Science Foundation~~
文摘Composite structures of ZSM‐5 zeolites were prepared by the synthesis of mesopores and mi‐cropores using carbon nanotubes as a template. Dealumination of mesopores was performed selec‐tively using trichloroacetic acid, which could only diffuse into the mesopores and not the mi‐cropores owing to the size of the trichloroacetic acid molecules. Empty spaces are created in the catalyst as a result of removal of the Al atoms from the zeolite structure. If Si atoms fill the empty space, then the structure of the mesopores becomes similar to silicates, which do not have any cata‐lytic properties. Silicon containing solution was used to fill the empty spaces, and in doing so, a unique method was developed, by which silicon atoms can directly replace the extracted Al atoms from the mesopore structure. Therefore, by changing the geometry and properties of the mesopores and micropores, the amount of coke reduced from 14%for HZSM‐5 to 3%for the modified zeolite.
文摘The effects of the initial framework SiO2/Al2O3 ratio and temperature on the structural changes of NaY zeolites during hydrothermal treatments are studied. Two samples with different framework SiO2/Al2O3 ratios are subjected to hydrothermal treatment at four different temperatures. For zeolite with a lower initial SiO2/Al2O3 ratio of 4.2, mesopores are easily formed because more framework aluminum is detached. Moreover, two kinds of mesopores are produced at a higher temperature due to the interconnection of vacancies and smaller mesopores. For zeolite with a higher initial SiO2/Al2O3 ratio of 6.0, there are less mesopores formed as compared with the lower initial SiO2/Al2O3 ratio sample, but there are some macropores formed. This may be attributed to the isolation of vacancies and the different distributions of aluminum in the crystal lattice of the zeolite. The experiment data show that NaY with the SiO2/Al2O3 ratio of 6.0 retains a high relative crystallinity during the hydrothermal treatment. This proves that a high framework SiO2/Al2O3 ratio benefits the stability of zeolite.
基金funded by Fundamental Research Grant Scheme,University of Malaya through the project number of FP031-2013A
文摘Hierarchical nanoporous HY zeolites were synthesized from acid-activated kaolin. The hierarchical factor (HF) was maximized by varying the aging and crystallization time. This was achieved by maximizing the external surface area without greatly reducing the micropore volume. The resulting products were characterized using X-ray diffraction (XRD), X-ray fluorescence, N2 adsorption, and NH3 temperature-programmed desorption. The nanoporous HY zeolite with the highest HF was obtained by aging for 48 h and a crystallization time of 24 h. The acidiW and crystallinity varied depending on the operating parameters. Incorporation of an appropriate amount of NaCI was also vital in maximizing the HF, crystallinity, and acidity. The sample crystallinities were determined by comparing their XRD peak intensities with those of a conventional Y zeolite. The results show that optimizing this process could lead to a widely acceptable commercial route for FIY zeolite production.
基金National Natural Science Foundation of China(No.21676053)
文摘The pore sizes of traditional zeolites are in the range of0. 3-1. 5 nm,which strongly hinder the diffusion of large reactant and product molecules within the zeolite pores. To compensate for it,we tried to create mesopores in traditional microporous zeolites and retain all advantages of microporous zeolites. Mesoporous Zeolite Socony Mobile-Five( ZSM-5) zeolite was synthesized by a new double ester base long carbon chains organosilane quaternary ammonium salt as the soft template agent in hydrothermal method.The structure of the acquired zeolite crystals was confirmed by fieldemission scanning electron microscopy( FE-SEM), transmission electron microscopy( TEM), nitrogen adsorption-desorption measurements and X-ray diffraction( XRD),which indicated that their structure had the same characteristics as traditional ZSM-5 zeolites. Compared with traditional ZSM-5 zeolite,there were 4 nm and 15 nm mesopores in the crystal. The prepared hierarchical porous ZSM-5 zeolite was expected to be effective catalytic materials for chemical reactions involving large molecules.
基金financially supported by the Independent Project Program of State Key Laboratory of Petroleum Pollution Control (No. PPCIP2017005)the CNPC Research Institute of Safety and Environmental Technologythe Top Talents Project of China University of Petroleum (grant No. 2015011)
文摘In the process of toluene adsorption, the choice of adsorbent is the key. In this work, micro-mesoporous carbon materials were prepared and characterized. The synthesis process was performed by using MCM-41 as the template, and sucrose and furfuryl alcohol as the carbon source, respectively. The toluene adsorption capacity of studied adsorbents was evaluated under different toluene initial concentration, temperature and bed height. In order to further improve the adsorption capacity, nitric acid was used for modification of the selected adsorbent. The adsorption performance after modification was also investigated. The prepared carbon materials were characteristic of typical type IV isotherms and pore size distribution was focused on micropores and mesopores. Compared with MCM-41, the prepared carbon materials showed high toluene adsorption capacity. After modification the specific surface area and oxygen groups of adsorbent were increased, making the adsorption capacity increase from 185.3 mg/g to a maximum value of 514.7 mg/g. The adsorption capacity of adsorbent mainly depended on its surface area and surface chemical property.
基金the national natural science foundation of China (No.20541002)SINOPEC basic research foundation (X504034) Zhejiang provincial natural science foundation (No.Y405064)
文摘Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-containing mesoporous materials have been reviewed. Various strategies for the preparation of Ti-containing mesoporous materials, such as direct synthesis and post-synthesis, are described. Modifications of Ti-containing mesoporous materials by surface-grafting and atom-planting are also discussed. All approaches aimed mainly at the improving of the stability, the hydrophobicity, and mostly the catalytic activity. Structural and mechanistic features of various synthetic systems are discussed. Ticontaining mesoporous materials in liquid phase catalytic oxidation of organic compounds with H2O2 as an oxidant is briefly summarized, showing their broad utilities for green synthesis of fine chemicals by catalytic oxidative reactions.
文摘The mesoporous Al-SBA-15 zeolite was obtained via impregnation of pure silica-based SBA-15 zeolite with aluminum nitrate.The Al-SBA-15 sample was calcined in air at 800 ℃ for 6 h and hydrothermally treated at near 100 ℃ for 120 h,respectively,and then the thermal and hydrothermal stability of Al-SBA-15 sample was investigated by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and nitrogen adsorption and desorption techniques.The Al-SBA-15 sample was also studied by 27 Al nuclear magnetic resonance (27 Al NMR) and ammonia temperature programmed desorption (NH 3-TPD) techniques.In addition,the catalytic activity of Al-SBA-15 zeolite was investigated by the Friedel-Crafts reactions of 2,4-di-tert-butylphenol with cinnamyl alcohol.The test results showed that the thermal and hydrothermal stability of Al-SBA-15 zeolite was better than that of SBA-15 zeo-lite.The Al-SBA-15 zeolite sample prepared by impregnation method exhibits more framework aluminum species and Al-O-Si units.Therefore,the number of the surface hydroxyl groups was reduced,resulting in the stabilization of framework structure ofAl-SBA-15 zeolite.The aluminum species can form weak and medium-strong acid sites with catalytic activity.
基金financially supported by the Basic Research Program'Green Chemistry and Engineering of Heavy Oil Conversion with High Efficiency' and the National Key Fundamental Research Development Project(973 Project:No.2010CB226905)
文摘Two mixed-matrix NiMo/Al2O3 catalysts containing nano-and micro-sized zeolite Y have been prepared to explore the size effect of zeolite Y particle on the hydrodesulfurization(HDS)and hydrodenitrogenation(HDN)activities of fluid catalytic cracking(FCC)diesel.They were characterized by SEM,BET,XRD,H2-TPR,NH3-TPD and HRTEM.The results show that the catalyst containing nano-sized zeolite Y possesses larger average pore diameter,higher pore volume,weaker and lesser acid sites,more easily reducible metal phases,shorter MoS2 slabs and more slab layers than the catalyst containing micro-sized zeolite Y.The catalysts were also evaluated with a high-pressure fixed-bed reactor using real FCC diesel as feed.The results display that the catalyst containing nano-sized zeolite Y bears higher HDS and HDN activities and exhibits higher relative rate constant for the removal of total sulfur or nitrogen than the one containing micro-sized zeolite.