期刊文献+
共找到922篇文章
< 1 2 47 >
每页显示 20 50 100
Recent development of LiNi_xCo_yMn_zO_2:Impact of micro/nano structures for imparting improvements in lithium batteries 被引量:8
1
作者 潘成迟 Craig E.BANKS +3 位作者 宋维鑫 王驰伟 陈启元 纪效波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期108-119,共12页
The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materia... The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing. 展开更多
关键词 lithium-ion battery micro/nano structures LiNixCoyMnzO2 DOPING surface coating composite materials
下载PDF
Ignition processes and characteristics of charring conductive polymers with a cavity geometry in precombustion chamber for applications in micro/nano satellite hybrid rocket motors
2
作者 Zhiyuan Zhang Hanyu Deng +2 位作者 Wenhe Liao Bin Yu Zai Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期55-66,共12页
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of... The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually. 展开更多
关键词 micro/nano satellite hybrid propulsion Arc ignition Charring conductive polymer Ignition mechanism Ignition characteristic Repeated ignition
下载PDF
Synthesis of porous nano/micro structured LiFePO_4/C cathode materials for lithium-ion batteries by spray-drying method 被引量:1
3
作者 管晓梅 李国军 +1 位作者 黎春阳 任瑞铭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期141-147,共7页
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result... In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres. 展开更多
关键词 LiFePO4/C cathode nano/micro structure porous material spray drying electrochemical properties
下载PDF
Synthesis of hierarchical dendritic micro–nano structure ZnFe_2O_4 and photocatalytic activities for water splitting 被引量:5
4
作者 Zhongping Yao Yajun Zhang +2 位作者 Yaqiong He Qixing Xia Zhaohua Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第8期1112-1116,共5页
Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electr... Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electron microscopy were used to characterize the crystal structure, size and morphology. The results show that the sample(S-2) is composed of pure ZnFe_2O_4 when the molar ratio of Zn^(2+)/Fe^(2+)in the electrolyte is 0.35. Decreasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-1) is composed of ZnFe_2O_4 and α-Fe_2O_3, whereas increasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-3) is composed of ZnFe_2O_4 and Zn O. The lattice parameters of ZnFe_2O_4 are influenced by the molar ratio of Zn^(2+)/Fe: Zn at excess decreases the cell volume whereas Fe at excess increases the cell volume of Zn Fe_2O_4. All the samples have the dendritic structure, of which S-2 has micron-sized lush branches with nano-sized leaves. UV–Vis diffuse reflectance spectra were acquired by a spectrophotometer. The absorption edges gradually blue shift with the increase of the molar ratio of Zn^(2+)/Fe^(2+). Photocatalytic activities for water splitting were investigated under Xe light irradiation in an aqueous olution containing 0.1 mol·L^(-1)Na_2S/0.02 mol·L^(-1)Na_2SO_3 in a glass reactor. The relatively highest photocatalytic activity with 1.41 μmol·h-1· 0.02 g^(-1)was achieved by pure ZnFe_2O_4sample(S-2). The photocatalytic activity of the mixture phase of Zn Fe_2O_4 and α-Fe_2O_3(S-1) is better than ZnF e_2O_4 and ZnO(S-3). 展开更多
关键词 ZNFE2O4 ELECTROCHEMICAL reduction and thermal OXIDATION DENDRITIC micronano structure Hydrogen production
下载PDF
Preparation of micro/nano-structured ceramic coatings on Ti6Al4V alloy by plasma electrolytic oxidation process 被引量:9
5
作者 Da-jun ZHAI Ke-qin FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2546-2555,共10页
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce... In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF. 展开更多
关键词 plasma electrolytic oxidation Ti6Al4V alloy micro/nano structure NAF surface modification
下载PDF
Dropwise condensation heat transfer enhancement on surfaces micro/nano structured by a two-step electrodeposition process 被引量:4
6
作者 Hamid Reza TALESH BAHRAMI Alireza AZIZI Hamid SAFFARI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1065-1076,共12页
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe... Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time. 展开更多
关键词 dropwise condensation heat transfer ELECTRODEPOSITION micro/nano structure POROSITY
下载PDF
Construction and Properties of Structure-and Size-controlled Micro/Nano-energetic Materials 被引量:20
7
作者 HUANG Bing CAO Minhua +2 位作者 NIE Fude HUANG Hui HU Changwen 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期75-103,共29页
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development... The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given. 展开更多
关键词 applied chemistry structure SIZE micro/nano-energetic materials construction technology PROPERTY
下载PDF
Osteoblast Behavior on Hierarchical Micro-/Nano-Structured Titanium Surface 被引量:7
8
作者 Weiyan Meng Yanmin Zhou Yanjing Zhang Qing Cai Liming Yang Jinghui Zhao Chunyan Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第3期234-241,共8页
In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrol... In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings. 展开更多
关键词 dental implant OSTEOBLAST hierarchical micro-/nano-structure surface treatment electrolytic etching
下载PDF
Functional micro‐concrete 3D hybrid structures f abricated by two‐photon polymerization 被引量:2
9
作者 Yang Li Lianwei Chen +5 位作者 Fang Kong Zuyong Wang Ming Dao Chwee Teck Lim Fengping Li Minghui Hong 《光电工程》 CAS CSCD 北大核心 2017年第4期393-399,469,共8页
Arbitrary micro-scale three-dimensional(3D)structures fabrication is a dream to achieve many exciting goals that have been pursued for a long time.Among all these applications,the direct 3D printing to fabricate human... Arbitrary micro-scale three-dimensional(3D)structures fabrication is a dream to achieve many exciting goals that have been pursued for a long time.Among all these applications,the direct 3D printing to fabricate human organs and integrated photonic circuits are extraordinary attractive as they can promote the current technology to a new level.Among all the 3D printing methods available,two-photon polymerization(2PP)is very competitive as it is the unique method to achieve sub-micron resolution to make any desired tiny structures.For the conventional 2PP,the building block is the photoresist.However,the requirement for the building block is different for different purposes.It is very necessary to investigate and improve the photoresist properties according to different requirements.In this paper,we presented one hybrid method to modify the mechanical strength and light trapping efficiency of the photoresist,which transfers the photoresist into the micro-concretes.The micro-concrete structure can achieve±22%strength modification via a silica nano-particles doping.The structures doped with gold nano-particles show tunable plasmonic absorption.Dye doped hybrid structure shows great potential to fabricate 3D micro-chip laser. 展开更多
关键词 3D打印 光子集成电路 发展现状 技术创新
下载PDF
Superhydrophobic surfaces via controlling the morphology of ZnO micro/nano complex structure
10
作者 公茂刚 许小亮 +2 位作者 杨周 刘艳松 刘玲 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期466-471,共6页
ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wett... ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wettability of the above film surfaces was modified with a simple coating of heptadecafluorodecyltrimethoxy-silane in toluene. After modifying, the surface of ZnO film grown at 50℃ was converted from superhydrophilic with a water contact angle lower than 5° to superhydrophobic with a water contact angle of 165° Additionally, the surface of reticulate papillary nodes ZnO film grown at 100 ℃ had excellent superhydrophobicity, with a water contact angle of 173° and a sliding angle lower than 2° Furthermore, the water contact angle on the surface of petal-like and flake-hole ZnO films grown at 150℃ and 200℃ were found to be 140° and 120°, respectively. The wettability for the samples was found to depend strongly on the surface morphology which results from the growth temperature. 展开更多
关键词 HYDROTHERMAL SUPERHYDROPHOBIC ZNO micro/nano complex structure
下载PDF
Temperature Induces Self-assembly of Silicon Nano/Micro-structure based on Multi-physics Approach
11
作者 张俐楠 CHENG Congxiu +2 位作者 SONG Jihwan WU Liqun KIM Dongchoul 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第4期823-827,共5页
A three-dimensional dynamic model for nano/micro-fabrications of silicon was presented. With the developed model, the fabrication process of silicon on nothing(SON) structure was quantitatively investigated. We empl... A three-dimensional dynamic model for nano/micro-fabrications of silicon was presented. With the developed model, the fabrication process of silicon on nothing(SON) structure was quantitatively investigated. We employ a diffuse interface model that incorporates the mechanism of surface diffusion. The mechanism of the fabrication is systematically integrated for high reliability of computational analysis. A semi-implicit Fourier spectral scheme is applied for high efficiency and numerical stability. Moreover, the theoretical analysis provides the guidance that is ordered by the fundamental geometrical design parameters to guide different fabrications of SON structures. The performed simulations suggest a substantial potential of the presented model for a reliable design technology of nano/micro-fabrications. 展开更多
关键词 nano/micro-structure phase field model silicon on nothing SELF-ASSEMBLY
下载PDF
Potential application of functional micro-nano structures in petroleum
12
作者 LIU He JIN Xu +2 位作者 ZHOU Dekai YANG Qinghai LI Longqiu 《Petroleum Exploration and Development》 2018年第4期745-753,共9页
This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure d... This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining. 展开更多
关键词 PETROLEUM industry micro-nano structures micro-nano motor METAMATERIALS 3D PRINTING application direction OIL production engineering OIL equipment enhanced OIL recovery
下载PDF
Synthesis and electrochemical performance of micro-nano structured Li Fe1-xMnxPO4/C(0≤x≤0.05)cathode for lithium-ion batteries
13
作者 Chunyang Li Guojun Li Xiaomei Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期923-929,共7页
Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0... Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0μm are composed of lots of nanoparticles of 20 to 30 nm,and have the well-developed interconnected pore structure.In contrast,when Mn doping content is 3 mol%(x=0.03),the Li Fe(0.97)Mn(0.03)PO4/C demonstrates maximum specific surface area of 31.30 m^2/g,more uniform pore size and relatively better electrochemical performance.The initial discharge capacities are 161.59,157.04 and 153.13 m Ah/g at a discharge rate of 0.2,0.5 and 1 C,respectively.Meanwhile,the discharge capacity retentions are~100%after 120 cycles.The improved electrochemical performance should be attributed to higher specific surface,smaller polarization voltage,and a high Li~+diffusion rate due to the micro-nano porous structure and lattice expansion produced by Mn doping. 展开更多
关键词 Li Fe1-xMnxPO4/C Spray drying Electrochemical property micro-nano structure
下载PDF
Reservoir micro structure of Da'anzhai Member of Jurassic and its petroleum significance in Central Sichuan Basin, SW China
14
作者 PANG Zhenglian TAO Shizhen +6 位作者 ZHANG Qin YANG Jiajing ZHANG Tianshu YANG Xiaoping FAN Jianwei HUANG Dong WEI Tengqiang 《Petroleum Exploration and Development》 2018年第1期68-78,共11页
Based on the qualitative study of microscopic reservoir features using core analysis,cast and fluorescence thin sections inspection,scanning electron microscope(SEM)and field emission scanning electron microscope(FESE... Based on the qualitative study of microscopic reservoir features using core analysis,cast and fluorescence thin sections inspection,scanning electron microscope(SEM)and field emission scanning electron microscope(FESEM)and quantitative examination of pore size and geometry using mercury injection,nano-CT and nitrogen adsorption,reservoir rock of Da’anzhai Member were divided into 9 types,while storage spaces were divided into 4 types and 14 sub-types.The study shows that sparry coquina is the most promising reservoir type.Pores that smaller than 1μm in diameter contribute 91.27%of storage space volume.Most of them exhibit slot-like geometry with good connectivity.By building up storage space models,it was revealed that micron scale storage spaces mainly composed of fractures and nanometer scale pores and fractures form multi-scale dual porosity system.Low resource abundance,small single well controlled reserve,and low production are related to the nano-scale pore space in Da’anzhai Memer,whereas the dual-porosity system composed of pores and fractures makes for long-term oil yield.Due to the existence of abundant slot-like pore space and fractures,economic tight oil production was achieved without stimulations. 展开更多
关键词 Central SICHUAN Basin Da’anzhai MEMBER coquina storage space structure characteristics multi-scale FRACTURES ISOTHERMAL adsorption micro-nano pore
下载PDF
Preparation of Material Surface Structure Similarto Hydrophobic Structure of Lotus Leaf 被引量:1
15
作者 CAO Feng GUAN Zisheng LI Dongxu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期513-517,共5页
Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (P... Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (PS) moulds of the mastoid microstructure on lotus leaf surface were prepared respectively by the nano/micro replication technology. And poly(dimethylsiloxane) (PDMS) replicas with the mastoid-like microstructure were prepared from these two kinds of polymer moulds. Scanning electronic microscope (SEM) was employed to investigate the morphology and microstructures on moulds and replicas. Both the static and dynamic contact angles between water droplet and PDMS replicas' surface were also measured. As a result, similar microstructure can be observed clearly on the surface of PDMS replicas and the static contact angle on PDMS replicas was enhanced dramatically by the existence of these microstructures. 展开更多
关键词 HYDROPHOBIC BIONICS surface structure nano/micro replication
下载PDF
Generalized model for laser-induced surface structure in metallic glass 被引量:1
16
作者 叶林茂 武振伟 +2 位作者 刘凯欣 汤秀章 熊向明 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期557-562,共6页
The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are in... The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated.We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid.A generalized model is presented to describe the special morphology,which fits the experimental result well.It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples.The greater the viscosity is,the shorter the amplitude and the wavelength are. 展开更多
关键词 metallic glasses pulse laser processing micro-nano scale surface structure VISCOSITY
下载PDF
Generation of micro/nano hybrid surface structures on copper by femtosecond pulsed laser irradiation 被引量:3
17
作者 Ayumi Nakajima Masaki Omiya Jiwang Yan 《Nanomanufacturing and Metrology》 EI 2022年第3期274-282,共9页
The delamination of copper lead frames from epoxy molding compounds(EMC)is a severe problem for microelectronic devices,as it leads to reduced heat dissipation or circuit breakage.The micro/nanoscale surface structuri... The delamination of copper lead frames from epoxy molding compounds(EMC)is a severe problem for microelectronic devices,as it leads to reduced heat dissipation or circuit breakage.The micro/nanoscale surface structuring of copper is a promising method to improve the copper-EMC interfacial adhesion.In this study,the generation of micro/nano hybrid structures on copper surfaces through femtosecond pulsed laser irradiation is proposed to improve interfacial adhesion.The micro/nano hybrid structures were realized by generating nanoscale laser-induced periodic surface structures(LIPSS)on microscale parallel grooves.Several types of hybrid surface structures were generated by changing the laser polarization direction,fluence,and scanning speed.At a specific aspect ratio of microgrooves,a latticed structure was generated on the sides of microgrooves by combining LIPSS formation and direct laser interference patterning.This study provides an efficient method for the micro/nanoscale hybrid surface structure formation for interfacial adhesion improvement between copperand EMC. 展开更多
关键词 Femtosecond pulsed laser COPPER Metal surface LIPSS Direct laser interference patterning-micro/nano hybrid structures
原文传递
ZnO micro-nano composite hydrophobic film prepared by the three-step method
18
作者 马恺 李华 +3 位作者 张晗 许小亮 公茂刚 杨周 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第5期1942-1946,共5页
The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step meth... The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step method. On thin buffer films of SiO2, which were first fabricated on glass substrates by the so,gel dip-coating method, a ZnO seed layer was deposited via RF magnetron sputtering. Then two different ZnO films, micro-nano and micro-only flowerlike structures, were grown by the hydrothermal method. The prepared films have different hydrophobic properties after surface modification. The structures of the obtained ZnO films were characterized using x-ray diffraction and field-emission scanning electron microscopy. A conclusion that a micro-nano composite structure is more beneficial to hydrophobicity than a micro-only structure was obtained through research into the effect of structure on hydrophobic properties. 展开更多
关键词 three-step method ZNO micro-nano structure hydrophobic film
下载PDF
Preparation of calcium carbonate with microstructure and nanostructure from carbide slag for CO_(2) sequestration by using recyclable ammonium chloride
19
作者 Jin Yao Qiuju Chen +1 位作者 Li Zeng Wenjin Ding 《Particuology》 SCIE EI CAS CSCD 2024年第7期1-9,共9页
Based on the composition characteristics of carbide slag and the application of polyvinyl chloride,a method of preparing calcium carbonate with microstructure and nanostructure by using carbide slag as a raw material ... Based on the composition characteristics of carbide slag and the application of polyvinyl chloride,a method of preparing calcium carbonate with microstructure and nanostructure by using carbide slag as a raw material and ammonium chloride as a leaching agent was proposed.The factors for the preparation of calcium carbonate and the effects of different conditions on the crystal phase,grain size,and morphology of calcium carbonate were systematically studied.The results showed that the nanosized calcium carbonate was prepared at 60 mL/min,25°C,no additional ammonia,and 60 min.The product of spherical vaterite was in accordance with the relevant standards for the industrial precipitation of calcium carbonate.Moreover,the reuse of carbonation filtrate was realized.The crystal phase,grain size,and morphology of the carbonation product could be controlled by adjusting the reaction conditions.The manuscript provided a new idea for resource utilization of carbide slag and preparing nanocalcium carbonate. 展开更多
关键词 Carbide slag Ammonium chloride Cyclic utilization micro and nano structure Product control
原文传递
Fabrication of micro-nano patterned materials mimicking the topological structure of extracellular matrix for biomedical applications
20
作者 Yifeng Nie Dong Han Xiang Li 《Nano Research》 SCIE EI CSCD 2024年第5期4244-4258,共15页
With the advent of tissue engineering and biomedicine,the creation of extracellular matrix(ECM)biomaterials for in vitro applications has become a prominent and promising strategy.These ECM materials provide physical,... With the advent of tissue engineering and biomedicine,the creation of extracellular matrix(ECM)biomaterials for in vitro applications has become a prominent and promising strategy.These ECM materials provide physical,biochemical,and mechanical properties that guide cellular behaviors,such as proliferation,differentiation,migration,and apoptosis.Because micro-and nano-patterned materials have a unique surface topology and low energy replication process that directly affect cellular biological behaviors at the interface,the fabrication of micro-nano pattern biomaterials and the regulation of surface physical and chemical properties are of great significance in the fields of cell regulation,tissue engineering,and regenerative medicine.Herein,we provide a comprehensive review of the progress in the fabrication and application of patterned materials based on the coupling of mechanical action at the micro-and nano-meter scale,including photolithography,micro-contact printing,electron beam lithography,electrospinning,and 3D printing technology.Furthermore,a summary of the fabrication process,underlying principles,as well as the advantages and disadvantages of various technologies are reviewed.We also discuss the influence of material properties on the fabrication of micro-and nano-patterns. 展开更多
关键词 micro/nano hybrid materials patterning fabrication techniques extracellular matrix substrate-cell interaction biomedical engineering
原文传递
上一页 1 2 47 下一页 到第
使用帮助 返回顶部