At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS...At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS, energy beam etching and micro/nano-machining, etc. A common problem for t hese processes is the difficulty to fabricate arbitrary form for 3-dimensional micro/nano-parts, devices or mechanisms. To develop advanced MEMS manufacturin g technology, and to achieve fabrication of true 3-dimensional parts, devices or mechanisms, this paper proposes a nanofabrication technology for rapid proto typing of 3-dimensional parts, using plasma chemical vapor deposition (PCVD). This process can be describes as follows: A laser beam is produced by a low power, quasi molecule laser. It enters the vac uum chamber through a window, and is focused on with the substrate surface. A ga s in the chamber is ionized by the laser beam to produce PCVD on the substrate s urface, and forms a particle of the size of Ф100 nm (its thickness is about 100 nm). When the laser beam moves along X-axis, many particles form a line. Then the laser beam moves one step in Y-axis to form a new line. A plane is complete d by many lines. Then the substrate moves in Z-axis to form new plane. Eventu ally, many planes form a 3-dimensional component. Using available CAD/CAM softw are with this process, rapid prototyping of complex components can be achieved. A nanometer precision linear motor, such as that described in Chinese national p atent (patent No. ZL 98 2 16753.9), can be used to obtain the nanometer precisio n movements in the process. The process does not require mask, can be used for v arious rapid prototyping materials, to obtain high fabrication precision (its sc ale precision is 15 nm), and larger ratio of height to width of micro/nano-stru cture. It can find widespread applications in the fabrication of micro-mechani sm, trimming IC, and fabricating minilens, etc.展开更多
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development...The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.展开更多
The kind of micro-/nano-meter precision actuator in cludes a piezoelectric one, an electric deformation one, a magnetic deformation one, a mechanical one, and a mechanical and electrical one. This paper puts forw ard ...The kind of micro-/nano-meter precision actuator in cludes a piezoelectric one, an electric deformation one, a magnetic deformation one, a mechanical one, and a mechanical and electrical one. This paper puts forw ard a mechanical and electrical step actuator of nanometer precision, which cons ists of a step motor of large fine-dividing number of step angle, shaft couplin gs, a decelerator of large decelerating ratio, a screw mechanism and a pole of U shape, and has the minimum step displacement of 10 nm, the step displac ement precision of 1 nm, the step frequency of 4 kHz, the maximum loadability of 20 kg. In order to achieve the nano displacement of nano precision by this actu ator, the theoretical analysis of stress and strain must be made on the transmit ting course of nano displacement of the actuator, and their numerical simulation is done by computer. The paper establishes the constitutive equation of 3-D stress and the strain co ordinate equation of the composing system of the nanometer precision actuator. A s a result, the theoretical relation among stress and strain and displacement is set up. The torque of the step motor produces a thrust to transmit the displace ment of the above system of the parts and assemblies to output the needed nano d isplacement. In the case of concrete analysis and calculating, the comparing met hod of film-roof is applied to analyze and calculate the motor axis, decelerato r axes, the screw pole and the nut. The analysis method of plane stress and stra in is used to analyze and calculate the shaft couplings and gears. The analysis method of beam stress and strain is used to do the pole of U shape. These calcul ation is belong to the physical non-linear problem. Under the condition of smal l deformation, the analysis way of the finite element can be combined with the a bove analyses and calculations. The elementary analysis results show that the na nometer precision actuator can be applied in STM nanofabrication.展开更多
Three dimension free curves find wide applications in engineering. There is no problem to express them exactly mathematically, but th e reportage has not been done on the investigation of precision analysis of thre e-...Three dimension free curves find wide applications in engineering. There is no problem to express them exactly mathematically, but th e reportage has not been done on the investigation of precision analysis of thre e-dimension free curves nanofabrication. Nanofabrication Precision includes the geometrical precision and the precision of driving system (below simply cal led the system precision). This paper submits the precision analysis method of c urve normal vector to analyze geometrical precision. Take an aspherical surf ace for example, it can be fitted and constructed by tensor product parameter cu rves, such as linear drawing curves, straight veins curves, rotating curves, swe eping curves, DUCT curves and Geomap curves. Then the curves of the aspherical s urface is iterated and modified to select the best fitted curves of the aspheric al surface. Finally, the geometrical precision of perfect approximate aspherical surface fitting has been sought. This kind of geometrical fitting construction is very important. Another is the system precision, which contains axial position precision, line p recision, and twisting and swinging precision, etc. The paper adopts the theory of precision optimum match (Prof. Wang Er-qi first put forward in 19 83) to allocate precision optimumly. The minimum cost is used as an objective fu nction, and weight method matches the precision. To obtain the optimum match combination of the minimum cost design parameters and every composing element t olerance, the precision is iterated and sought optimumly to design the system op timumly. The theoretical analysis shows that it’s feasible to control three dim ension free curves nanofabrication within nanometer scale precision.展开更多
微控制单元(Micro Control Unit,MCU)集成电路技术具有强大的处理能力和可配置性,能有效支持复杂的数据处理和控制任务。智能仪器仪表对高精度、高可靠性及良好用户交互性的高标准需求,正驱动着相关人员探索先进的硬件电路设计方案,以...微控制单元(Micro Control Unit,MCU)集成电路技术具有强大的处理能力和可配置性,能有效支持复杂的数据处理和控制任务。智能仪器仪表对高精度、高可靠性及良好用户交互性的高标准需求,正驱动着相关人员探索先进的硬件电路设计方案,以适应日益严苛的工业应用标准。介绍基于MCU集成电路技术的智能仪器仪表的硬件电路设计与实现,阐述关键组件的选择与设计、印制电路板(Printed Circuit Board,PCB)布局设计等,并探讨硬件电路的实现,旨在为智能仪器仪表的设计提供一套完整的解决方案。展开更多
A new process and technology of rapid prototyping for a μ-micro motor is presented as a nontraditional machining and an advanced manufacturing technology (AMT) to be realized by using masks, including the operation p...A new process and technology of rapid prototyping for a μ-micro motor is presented as a nontraditional machining and an advanced manufacturing technology (AMT) to be realized by using masks, including the operation principle of the motor, structure design, technique, driven circuit, and quality examination with Raman spectrum. The μ-micro motor is fabricated by the micro electro-mechanical systems (MEMS) process, the structure design must be considered to fabricate or assembly the parts during machining the motor in the meantime. The research proved that integration of IC (integrated circuit) process and MEMS using masks is effective in obtaining the rapid prototyping manufacturing of the μ-micro motor. With the mature technique to fabricate the motor, there are advantages to produce the motor in short time and with lower cost than before. The motor is a common power source of micro machines in military and civilian applications, for example, applied to micro robot, micro bio medicine, and micro machine. The size of the motor is 190 μm in maximum diameter by 125 μm in height that is bulk machined in array with the number of hundreds of micro motors on a substrate.展开更多
文摘At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS, energy beam etching and micro/nano-machining, etc. A common problem for t hese processes is the difficulty to fabricate arbitrary form for 3-dimensional micro/nano-parts, devices or mechanisms. To develop advanced MEMS manufacturin g technology, and to achieve fabrication of true 3-dimensional parts, devices or mechanisms, this paper proposes a nanofabrication technology for rapid proto typing of 3-dimensional parts, using plasma chemical vapor deposition (PCVD). This process can be describes as follows: A laser beam is produced by a low power, quasi molecule laser. It enters the vac uum chamber through a window, and is focused on with the substrate surface. A ga s in the chamber is ionized by the laser beam to produce PCVD on the substrate s urface, and forms a particle of the size of Ф100 nm (its thickness is about 100 nm). When the laser beam moves along X-axis, many particles form a line. Then the laser beam moves one step in Y-axis to form a new line. A plane is complete d by many lines. Then the substrate moves in Z-axis to form new plane. Eventu ally, many planes form a 3-dimensional component. Using available CAD/CAM softw are with this process, rapid prototyping of complex components can be achieved. A nanometer precision linear motor, such as that described in Chinese national p atent (patent No. ZL 98 2 16753.9), can be used to obtain the nanometer precisio n movements in the process. The process does not require mask, can be used for v arious rapid prototyping materials, to obtain high fabrication precision (its sc ale precision is 15 nm), and larger ratio of height to width of micro/nano-stru cture. It can find widespread applications in the fabrication of micro-mechani sm, trimming IC, and fabricating minilens, etc.
基金Sponsored by National Natural Science Foundation of China (21231002,21276026,21271023,21173021,91022006,11202193,11172276,and 11072225)the 111 Project ( B07012)+1 种基金the Program of Cooperation of the Beijing Education Commission ( 20091739006)Specialized Research Fund for the Doctoral Program of Higher Education ( 20101101110031)
文摘The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.
文摘The kind of micro-/nano-meter precision actuator in cludes a piezoelectric one, an electric deformation one, a magnetic deformation one, a mechanical one, and a mechanical and electrical one. This paper puts forw ard a mechanical and electrical step actuator of nanometer precision, which cons ists of a step motor of large fine-dividing number of step angle, shaft couplin gs, a decelerator of large decelerating ratio, a screw mechanism and a pole of U shape, and has the minimum step displacement of 10 nm, the step displac ement precision of 1 nm, the step frequency of 4 kHz, the maximum loadability of 20 kg. In order to achieve the nano displacement of nano precision by this actu ator, the theoretical analysis of stress and strain must be made on the transmit ting course of nano displacement of the actuator, and their numerical simulation is done by computer. The paper establishes the constitutive equation of 3-D stress and the strain co ordinate equation of the composing system of the nanometer precision actuator. A s a result, the theoretical relation among stress and strain and displacement is set up. The torque of the step motor produces a thrust to transmit the displace ment of the above system of the parts and assemblies to output the needed nano d isplacement. In the case of concrete analysis and calculating, the comparing met hod of film-roof is applied to analyze and calculate the motor axis, decelerato r axes, the screw pole and the nut. The analysis method of plane stress and stra in is used to analyze and calculate the shaft couplings and gears. The analysis method of beam stress and strain is used to do the pole of U shape. These calcul ation is belong to the physical non-linear problem. Under the condition of smal l deformation, the analysis way of the finite element can be combined with the a bove analyses and calculations. The elementary analysis results show that the na nometer precision actuator can be applied in STM nanofabrication.
文摘Three dimension free curves find wide applications in engineering. There is no problem to express them exactly mathematically, but th e reportage has not been done on the investigation of precision analysis of thre e-dimension free curves nanofabrication. Nanofabrication Precision includes the geometrical precision and the precision of driving system (below simply cal led the system precision). This paper submits the precision analysis method of c urve normal vector to analyze geometrical precision. Take an aspherical surf ace for example, it can be fitted and constructed by tensor product parameter cu rves, such as linear drawing curves, straight veins curves, rotating curves, swe eping curves, DUCT curves and Geomap curves. Then the curves of the aspherical s urface is iterated and modified to select the best fitted curves of the aspheric al surface. Finally, the geometrical precision of perfect approximate aspherical surface fitting has been sought. This kind of geometrical fitting construction is very important. Another is the system precision, which contains axial position precision, line p recision, and twisting and swinging precision, etc. The paper adopts the theory of precision optimum match (Prof. Wang Er-qi first put forward in 19 83) to allocate precision optimumly. The minimum cost is used as an objective fu nction, and weight method matches the precision. To obtain the optimum match combination of the minimum cost design parameters and every composing element t olerance, the precision is iterated and sought optimumly to design the system op timumly. The theoretical analysis shows that it’s feasible to control three dim ension free curves nanofabrication within nanometer scale precision.
文摘微控制单元(Micro Control Unit,MCU)集成电路技术具有强大的处理能力和可配置性,能有效支持复杂的数据处理和控制任务。智能仪器仪表对高精度、高可靠性及良好用户交互性的高标准需求,正驱动着相关人员探索先进的硬件电路设计方案,以适应日益严苛的工业应用标准。介绍基于MCU集成电路技术的智能仪器仪表的硬件电路设计与实现,阐述关键组件的选择与设计、印制电路板(Printed Circuit Board,PCB)布局设计等,并探讨硬件电路的实现,旨在为智能仪器仪表的设计提供一套完整的解决方案。
基金Supported by Foundation of Department of Mechanical and Electrical Engineering of Xiamen University (No. Y03001)
文摘A new process and technology of rapid prototyping for a μ-micro motor is presented as a nontraditional machining and an advanced manufacturing technology (AMT) to be realized by using masks, including the operation principle of the motor, structure design, technique, driven circuit, and quality examination with Raman spectrum. The μ-micro motor is fabricated by the micro electro-mechanical systems (MEMS) process, the structure design must be considered to fabricate or assembly the parts during machining the motor in the meantime. The research proved that integration of IC (integrated circuit) process and MEMS using masks is effective in obtaining the rapid prototyping manufacturing of the μ-micro motor. With the mature technique to fabricate the motor, there are advantages to produce the motor in short time and with lower cost than before. The motor is a common power source of micro machines in military and civilian applications, for example, applied to micro robot, micro bio medicine, and micro machine. The size of the motor is 190 μm in maximum diameter by 125 μm in height that is bulk machined in array with the number of hundreds of micro motors on a substrate.