Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is t...Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication.展开更多
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t...Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.展开更多
Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with th...Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock.展开更多
A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the dr...A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the driving force for the phase field consists of both tensile and shear components,with the fluid contribution primarily manifesting in the tension driving force.The displacement and pressure are solved simultaneously by an implicit method.The numerical solution's iterative format is established by the finite element discretization and Newton-Raphson(NR)iterative methods.The correctness of the model is verified through the uniaxial compression physical experiments on fluid-pressurized rocks,and the limitations of the hydraulic fracture expansion phase-field model,which only considers mode I fractures,are revealed.In addition,the influence of matrix mode II fracture toughness value,natural fracture mode II toughness value,and fracturing fluid injection rate on the hydraulic fracture propagation in porous media with natural fractures is studied.展开更多
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ...The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.展开更多
As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin...As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.展开更多
Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliabl...Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.展开更多
Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to...Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.展开更多
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects...The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.展开更多
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of h...Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of high-speed railway so as to provide a new way of thinking and method for the detection of contact wire injuries of high-speed railway.Design/methodology/approach–Based on the principle of eddy current detection and the specification parameters of high-speed railway contact wires in China,a finite element model for eddy current testing of contact wires was established to explore the variation patterns of crack signal characteristics in numerical simulation.A crack detection system based on eddy current detection was built,and eddy current detection voltage data was obtained for cracks of different depths and widths.By analyzing the variation law of eddy current signals,characteristic parameters were obtained and a quantitative evaluation model for crack width and depth was established based on the back propagation(BP)neural network.Findings–Numerical simulation and experimental detection of eddy current signal change rule is basically consistent,based on the law of the selected characteristics of the parameters in the BP neural network crack quantitative evaluation model also has a certain degree of effectiveness and reliability.BP neural network training results show that the classification accuracy for different widths and depths of the classification is 100 and 85.71%,respectively,and can be effectively realized on the high-speed railway contact line cracks of the quantitative evaluation classification.Originality/value–This study establishes a new type of high-speed railway contact wire crack detection and identification method,which provides a new technical means for high-speed railway contact wire injury detection.The study of eddy current characteristic law and quantitative evaluation model for different cracks in contact line has important academic value and practical significance,and it has certain guiding significance for the detection technology of contact line in high-speed railway.展开更多
In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strat...In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strategy for extracting road cracks.This methodology involves the integration of laser point cloud data obtained from a vehicle-mounted system and a panoramic sequence of images.The study employs a vehicle-mounted LiDAR measurement system to acquire laser point cloud and panoramic sequence image data simultaneously.A convolutional neural network is utilized to extract cracks from the panoramic sequence image.The extracted sequence image is then aligned with the laser point cloud,enabling the assignment of RGB information to the vehicle-mounted three dimensional(3D)point cloud and location information to the two dimensional(2D)panoramic image.Additionally,a threshold value is set based on the crack elevation change to extract the aligned roadway point cloud.The three-dimensional data pertaining to the cracks can be acquired.The experimental findings demonstrate that the use of convolutional neural networks has yielded noteworthy outcomes in the extraction of road cracks.The utilization of point cloud and image alignment techniques enables the extraction of precise location data pertaining to road cracks.This approach exhibits superior accuracy when compared to conventional methods.Moreover,it facilitates rapid and accurate identification and localization of road cracks,thereby playing a crucial role in ensuring road maintenance and traffic safety.Consequently,this technique finds extensive application in the domains of intelligent transportation and urbanization development.The technology exhibits significant promise for use in the domains of intelligent transportation and city development.展开更多
Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theo...Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theoretical analysis of the length,inclination angle,and propagation angle of micron-scale cracks,nor have they established appropriate criteria to describe the crack propagation process.The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood,which makes it challenging to prevent engineering disasters in these types of rocks.To address this issue,we have used the existing generalized maximum tangential stress(GMTS)and generalized maximum energy release rate(GMERR)criteria as the basis and introduced parameters related to micron-scale crack propagation and water action.The GMTS and GMERR criteria for micronscale crack propagation in red-bed soft rocks under hydraulic action(abbreviated as the Wmic-GMTS and Wmic-GMERR criteria,respectively)were established to evaluate micron-scale crack propagation in redbed soft rocks under hydraulic action.The influence of the parameters was also described.The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests(UCTs)based on digital image correlation(DIC)technology.The study analyzed the length,propagation and inclination angles,and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria.The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action.This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action.It covers topics such as the internal-external weakening of nano-scale particles,lateral propagation of micron-scale cracks,weakening of the mechanical properties of millimeter-scale soft rocks,and resulting interface damage at the engineering scale.The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action.展开更多
This research developed a hybrid position-channel network (named PCNet) through incorporating newly designed channel and position attention modules into U-Net to alleviate the crack discontinuity problem in channel an...This research developed a hybrid position-channel network (named PCNet) through incorporating newly designed channel and position attention modules into U-Net to alleviate the crack discontinuity problem in channel and spatial dimensions. In PCNet, the U-Net is used as a baseline to extract informative spatial and channel-wise features from shield tunnel lining crack images. A channel and a position attention module are designed and embedded after each convolution layer of U-Net to model the feature interdependencies in channel and spatial dimensions. These attention modules can make the U-Net adaptively integrate local crack features with their global dependencies. Experiments were conducted utilizing the dataset based on the images from Shanghai metro shield tunnels. The results validate the effectiveness of the designed channel and position attention modules, since they can individually increase balanced accuracy (BA) by 11.25% and 12.95%, intersection over union (IoU) by 10.79% and 11.83%, and F1 score by 9.96% and 10.63%, respectively. In comparison with the state-of-the-art models (i.e. LinkNet, PSPNet, U-Net, PANet, and Mask R–CNN) on the testing dataset, the proposed PCNet outperforms others with an improvement of BA, IoU, and F1 score owing to the implementation of the channel and position attention modules. These evaluation metrics indicate that the proposed PCNet presents refined crack segmentation with improved performance and is a practicable approach to segment shield tunnel lining cracks in field practice.展开更多
The increasing global population at a rapid pace makes road trafficdense;managing such massive traffic is challenging. In developing countrieslike Pakistan, road traffic accidents (RTA) have the highest mortality perc...The increasing global population at a rapid pace makes road trafficdense;managing such massive traffic is challenging. In developing countrieslike Pakistan, road traffic accidents (RTA) have the highest mortality percentageamong other Asian countries. The main reasons for RTAs are roadcracks and potholes. Understanding the need for an automated system forthe detection of cracks and potholes, this study proposes a decision supportsystem (DSS) for an autonomous road information system for smart citydevelopment with the use of deep learning. The proposed DSS works in layerswhere initially the image of roads is captured and coordinates attached to theimage with the help of global positioning system (GPS), communicated tothe decision layer to find about the cracks and potholes in the roads, andeventually, that information is passed to the road management informationsystem, which gives information to drivers and the maintenance department.For the decision layer, we projected a CNN-based model for pothole crackdetection (PCD). Aimed at training, a K-fold cross-validation strategy wasused where the value of K was set to 10. The training of PCD was completedwith a self-collected dataset consisting of 6000 images from Pakistani roads.The proposed PCD achieved 98% of precision, 97% recall, and accuracy whiletesting on unseen images. The results produced by our model are higher thanthe existing model in terms of performance and computational cost, whichproves its significance.展开更多
Automatic pavement crack detection is a critical task for maintaining the pavement stability and driving safety.The task is challenging because the shadows on the pavement may have similar intensity with the crack,whi...Automatic pavement crack detection is a critical task for maintaining the pavement stability and driving safety.The task is challenging because the shadows on the pavement may have similar intensity with the crack,which interfere with the crack detection performance.Till to the present,there still lacks efficient algorithm models and training datasets to deal with the interference brought by the shadows.To fill in the gap,we made several contributions as follows.First,we proposed a new pavement shadow and crack dataset,which contains a variety of shadow and pavement pixel size combinations.It also covers all common cracks(linear cracks and network cracks),placing higher demands on crack detection methods.Second,we designed a two-step shadow-removal-oriented crack detection approach:SROCD,which improves the performance of the algorithm by first removing the shadow and then detecting it.In addition to shadows,the method can cope with other noise disturbances.Third,we explored the mechanism of how shadows affect crack detection.Based on this mechanism,we propose a data augmentation method based on the difference in brightness values,which can adapt to brightness changes caused by seasonal and weather changes.Finally,we introduced a residual feature augmentation algorithm to detect small cracks that can predict sudden disasters,and the algorithm improves the performance of the model overall.We compare our method with the state-of-the-art methods on existing pavement crack datasets and the shadow-crack dataset,and the experimental results demonstrate the superiority of our method.展开更多
This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements...This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.展开更多
基金supported by China National Postdoctoral Program for Innovative Talents (BX20230121)China Postdoctoral Science Foundation (2023M741163)Shanghai Super Postdoctoral Incentive Program (2023741)。
文摘Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication.
基金supported by the China Scholarship Council (CSC) (No.202206020149)the Academic Excellence Foundation of BUAA for PhD Students,the Funding Project of Science and Technology on Reliability and Environmental Engineering Laboratory (No.6142004210106).
文摘Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.
基金We would like to acknowledge all the reviewers and editors and the sponsorship of National Natural Science Foundation of China(42030103)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(2021QNLM020001-6)the Laoshan National Laboratory of Science and Technology Foundation(LSKJ202203400).
文摘Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock.
基金Project supported by the National Natural Science Foundation of China(No.42202314)。
文摘A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the driving force for the phase field consists of both tensile and shear components,with the fluid contribution primarily manifesting in the tension driving force.The displacement and pressure are solved simultaneously by an implicit method.The numerical solution's iterative format is established by the finite element discretization and Newton-Raphson(NR)iterative methods.The correctness of the model is verified through the uniaxial compression physical experiments on fluid-pressurized rocks,and the limitations of the hydraulic fracture expansion phase-field model,which only considers mode I fractures,are revealed.In addition,the influence of matrix mode II fracture toughness value,natural fracture mode II toughness value,and fracturing fluid injection rate on the hydraulic fracture propagation in porous media with natural fractures is studied.
基金supported by the National Natural Science Foundation of China(Nos.52204092 and 52274203).
文摘The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.
基金supported by the Science and Technology Project of Fire Rescue Bureau of Ministry of Emergency Management (Grant No.2022XFZD05)S&T Program of Hebei(Grant No.22375419D)National Natural Science Foundation of China (Grant No.11802160)。
文摘As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.
基金funded by the National Natural Science(Grant No.52274015)。
文摘Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.
基金supported by the National Natural Science Foundation of China(Grant No.41972265)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-57)+1 种基金the Gansu Province Science Foundation(Grant No.20JR10RA492)Special thanks to the Environmental Research and Education Foundation for supporting the first author(Y.Tan)through a fellowship for his study at the University of Wisconsin-Madison.
文摘Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.
基金financially supported by the National Natural Science Foundation of China(No.52175352)the Xing Liao Ying Cai Project of Liaoning Province(No.XLYC2008036)the Shenyang Youth Innovation Talent Support Program(No.RC220429)。
文摘The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
文摘Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of high-speed railway so as to provide a new way of thinking and method for the detection of contact wire injuries of high-speed railway.Design/methodology/approach–Based on the principle of eddy current detection and the specification parameters of high-speed railway contact wires in China,a finite element model for eddy current testing of contact wires was established to explore the variation patterns of crack signal characteristics in numerical simulation.A crack detection system based on eddy current detection was built,and eddy current detection voltage data was obtained for cracks of different depths and widths.By analyzing the variation law of eddy current signals,characteristic parameters were obtained and a quantitative evaluation model for crack width and depth was established based on the back propagation(BP)neural network.Findings–Numerical simulation and experimental detection of eddy current signal change rule is basically consistent,based on the law of the selected characteristics of the parameters in the BP neural network crack quantitative evaluation model also has a certain degree of effectiveness and reliability.BP neural network training results show that the classification accuracy for different widths and depths of the classification is 100 and 85.71%,respectively,and can be effectively realized on the high-speed railway contact line cracks of the quantitative evaluation classification.Originality/value–This study establishes a new type of high-speed railway contact wire crack detection and identification method,which provides a new technical means for high-speed railway contact wire injury detection.The study of eddy current characteristic law and quantitative evaluation model for different cracks in contact line has important academic value and practical significance,and it has certain guiding significance for the detection technology of contact line in high-speed railway.
基金founded by National Key R&D Program of China (No.2021YFB2601200)National Natural Science Foundation of China (No.42171416)Teacher Support Program for Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture (No.JDJQ20200307).
文摘In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strategy for extracting road cracks.This methodology involves the integration of laser point cloud data obtained from a vehicle-mounted system and a panoramic sequence of images.The study employs a vehicle-mounted LiDAR measurement system to acquire laser point cloud and panoramic sequence image data simultaneously.A convolutional neural network is utilized to extract cracks from the panoramic sequence image.The extracted sequence image is then aligned with the laser point cloud,enabling the assignment of RGB information to the vehicle-mounted three dimensional(3D)point cloud and location information to the two dimensional(2D)panoramic image.Additionally,a threshold value is set based on the crack elevation change to extract the aligned roadway point cloud.The three-dimensional data pertaining to the cracks can be acquired.The experimental findings demonstrate that the use of convolutional neural networks has yielded noteworthy outcomes in the extraction of road cracks.The utilization of point cloud and image alignment techniques enables the extraction of precise location data pertaining to road cracks.This approach exhibits superior accuracy when compared to conventional methods.Moreover,it facilitates rapid and accurate identification and localization of road cracks,thereby playing a crucial role in ensuring road maintenance and traffic safety.Consequently,this technique finds extensive application in the domains of intelligent transportation and urbanization development.The technology exhibits significant promise for use in the domains of intelligent transportation and city development.
基金funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.42293354,42293351,and 42277131).
文摘Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theoretical analysis of the length,inclination angle,and propagation angle of micron-scale cracks,nor have they established appropriate criteria to describe the crack propagation process.The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood,which makes it challenging to prevent engineering disasters in these types of rocks.To address this issue,we have used the existing generalized maximum tangential stress(GMTS)and generalized maximum energy release rate(GMERR)criteria as the basis and introduced parameters related to micron-scale crack propagation and water action.The GMTS and GMERR criteria for micronscale crack propagation in red-bed soft rocks under hydraulic action(abbreviated as the Wmic-GMTS and Wmic-GMERR criteria,respectively)were established to evaluate micron-scale crack propagation in redbed soft rocks under hydraulic action.The influence of the parameters was also described.The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests(UCTs)based on digital image correlation(DIC)technology.The study analyzed the length,propagation and inclination angles,and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria.The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action.This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action.It covers topics such as the internal-external weakening of nano-scale particles,lateral propagation of micron-scale cracks,weakening of the mechanical properties of millimeter-scale soft rocks,and resulting interface damage at the engineering scale.The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action.
基金support from the Ministry of Science and Tech-nology of the:People's Republic of China(Grant No.2021 YFB2600804)the Open Research Project Programme of the State Key Labor atory of Interet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORPF/A19/2022)the General Research Fund(GRF)project(Grant No.15214722)from Research Grants Council(RGC)of Hong Kong Special Administrative Re gion Government of China are gratefully acknowledged.
文摘This research developed a hybrid position-channel network (named PCNet) through incorporating newly designed channel and position attention modules into U-Net to alleviate the crack discontinuity problem in channel and spatial dimensions. In PCNet, the U-Net is used as a baseline to extract informative spatial and channel-wise features from shield tunnel lining crack images. A channel and a position attention module are designed and embedded after each convolution layer of U-Net to model the feature interdependencies in channel and spatial dimensions. These attention modules can make the U-Net adaptively integrate local crack features with their global dependencies. Experiments were conducted utilizing the dataset based on the images from Shanghai metro shield tunnels. The results validate the effectiveness of the designed channel and position attention modules, since they can individually increase balanced accuracy (BA) by 11.25% and 12.95%, intersection over union (IoU) by 10.79% and 11.83%, and F1 score by 9.96% and 10.63%, respectively. In comparison with the state-of-the-art models (i.e. LinkNet, PSPNet, U-Net, PANet, and Mask R–CNN) on the testing dataset, the proposed PCNet outperforms others with an improvement of BA, IoU, and F1 score owing to the implementation of the channel and position attention modules. These evaluation metrics indicate that the proposed PCNet presents refined crack segmentation with improved performance and is a practicable approach to segment shield tunnel lining cracks in field practice.
基金Hunan Provincial Science and Technology Innovation Leader Project,Grant/Award Number:2021RC4025National Natural ScienceFoundation of China,Grant/Award Number:51808209Hunan Provincial Innovation Foundation for Postgraduate,Grant/Award Number:QL20210106.
文摘The increasing global population at a rapid pace makes road trafficdense;managing such massive traffic is challenging. In developing countrieslike Pakistan, road traffic accidents (RTA) have the highest mortality percentageamong other Asian countries. The main reasons for RTAs are roadcracks and potholes. Understanding the need for an automated system forthe detection of cracks and potholes, this study proposes a decision supportsystem (DSS) for an autonomous road information system for smart citydevelopment with the use of deep learning. The proposed DSS works in layerswhere initially the image of roads is captured and coordinates attached to theimage with the help of global positioning system (GPS), communicated tothe decision layer to find about the cracks and potholes in the roads, andeventually, that information is passed to the road management informationsystem, which gives information to drivers and the maintenance department.For the decision layer, we projected a CNN-based model for pothole crackdetection (PCD). Aimed at training, a K-fold cross-validation strategy wasused where the value of K was set to 10. The training of PCD was completedwith a self-collected dataset consisting of 6000 images from Pakistani roads.The proposed PCD achieved 98% of precision, 97% recall, and accuracy whiletesting on unseen images. The results produced by our model are higher thanthe existing model in terms of performance and computational cost, whichproves its significance.
基金supported in part by the 14th Five-Year Project of Ministry of Science and Technology of China(2021YFD2000304)Fundamental Research Funds for the Central Universities(531118010509)Natural Science Foundation of Hunan Province,China(2021JJ40114)。
文摘Automatic pavement crack detection is a critical task for maintaining the pavement stability and driving safety.The task is challenging because the shadows on the pavement may have similar intensity with the crack,which interfere with the crack detection performance.Till to the present,there still lacks efficient algorithm models and training datasets to deal with the interference brought by the shadows.To fill in the gap,we made several contributions as follows.First,we proposed a new pavement shadow and crack dataset,which contains a variety of shadow and pavement pixel size combinations.It also covers all common cracks(linear cracks and network cracks),placing higher demands on crack detection methods.Second,we designed a two-step shadow-removal-oriented crack detection approach:SROCD,which improves the performance of the algorithm by first removing the shadow and then detecting it.In addition to shadows,the method can cope with other noise disturbances.Third,we explored the mechanism of how shadows affect crack detection.Based on this mechanism,we propose a data augmentation method based on the difference in brightness values,which can adapt to brightness changes caused by seasonal and weather changes.Finally,we introduced a residual feature augmentation algorithm to detect small cracks that can predict sudden disasters,and the algorithm improves the performance of the model overall.We compare our method with the state-of-the-art methods on existing pavement crack datasets and the shadow-crack dataset,and the experimental results demonstrate the superiority of our method.
基金supported by the National Natural Science Foundation of China(No.11802165)the China Postdoctoral Science Foundation(Grant No.2019M650158).
文摘This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.