Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface lay...Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface layers is proposed. The static deformation and resonance frequencies of these surface-enhanced sensors with the simultaneous effects of the eigenstrain, the surface stress and the adsorption mass are analyzed. It is shown that the sensitivities of these novel cantilever sensors for the static deformation and resonance frequencies can be tuned by the porosity, the size of the pores and the structure of the porous films. For the three kinds of cantilever consisting of solid films, films with aligned cylindrical micro-scale pores, and those with nano-scale pores, the nano-porous one has the highest static and dynamic sensitivities, whereas the solid one has the lowest.展开更多
The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil ...The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil & gas resources.Unconventional oil & gas plays an increasingly important role in our energy demand.Tight gas,CBM,heavy oil and asphaltic sand have served as a key domain of exploration & development,with tight oil becoming a 'bright spot' domain and shale gas becoming a 'hotspot' domain.China has made great breakthroughs in unconventional oil & gas resources,such as tight gas,shale gas,tight oil and CBM,and great progress in oil shale,gas hydrate,heavy oil and oil sand.China has an estimated(223-263)×10~8t of unconventional oil resources and(890-1260)×l0^(12)m^3 of gas resources.China has made a breakthrough for progress in unconventional oil & gas study.New progress achieved in fine-grained sedimentary studies related to continental open lacustrine basin large-scale shallow-water delta sand bodies,lacustrine basin central sandy clastic flow sediments and marine-continental fine-grained sediments provide a theoretical basis for the formation and distribution of basin central reservoir bodies.Great breakthroughs have been made in unconventional reservoir geology in respect of research methodology & technology,multi-scale data merging and physical simulation of formation conditions.Overall characterization of unconventional reservoirs via multi-method and multi-scale becomes increasingly popular and facilitates the rapid development of unconventional oil & gas geological theory,method and technology.The formation of innovative,continuous hydrocarbon accumulation theory,the establishment of the framework of the unconventional oil & gas geological theory system,and the determination of the implications,geological feature,formation mechanism,distribution rule and core technology of unconventional oil& gas geological study lays a theoretical foundation for extensive unconventional oil & gas exploration and development.Theories and technologies of unconventional oil & gas exploration and development developed rapidly,including some key evaluation techniques such as 'sweet spot zone' integrated evaluation and a six-property evaluation technique that uses hydrocarbon source,lithology,physical property,brittleness,hydrocarbon potential and stress anisotropy,and some key development &engineering technologies including micro-seismic monitoring,horizontal drilling & completion and "factory-like" operation pattern, "man-made reservoir" development,which have facilitated the innovative development of unconventional oil & gas.These breakthroughs define a new understanding in four aspects:①theoretical innovation;② key technologies;③ complete market mechanism and national policy support;and ④ well-developed ground infrastructure,which are significant for prolonging the life cycle of petroleum industry,accelerating the upgrade and development of theories and technologies and altering the global traditional energy structure.展开更多
Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves,which have an effect on the coloration of Morpho butterflies and enhance the hydrophobicity of natural surfaces.We investiga...Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves,which have an effect on the coloration of Morpho butterflies and enhance the hydrophobicity of natural surfaces.We investigated the micro-scale and nano-scale structures on the wing surfaces of insects and found that the hierarchical multiple roughness structures help in enhancing the hydrophobicity.After examining 10 orders and 24 species of flying Pterygotan insects,we found that micro-scale and nano-scale structures typically exist on both the upper and lower wing surfaces of flying insects.The tiny structures such as denticle or setae on the insect wings enhance the hydrophobicity,thereby enabling the wings to be cleaned more easily.And the hydrophobic insect wings undergo a transition from Cassie to Wenzel states at pitch/size ratio of about 20.In order to examine the wetting characteristics on a rough surface,a biomimetic surface with micro-scale pillars is fabricated on a silicon wafer, which exhibits the same behavior as the insect wing,with the Cassie-Wenzel transition occurring consistently around a pitch/width value of 20.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.10872003,10932001 and 10525209)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD,GrantNo.2007B2)
文摘Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface layers is proposed. The static deformation and resonance frequencies of these surface-enhanced sensors with the simultaneous effects of the eigenstrain, the surface stress and the adsorption mass are analyzed. It is shown that the sensitivities of these novel cantilever sensors for the static deformation and resonance frequencies can be tuned by the porosity, the size of the pores and the structure of the porous films. For the three kinds of cantilever consisting of solid films, films with aligned cylindrical micro-scale pores, and those with nano-scale pores, the nano-porous one has the highest static and dynamic sensitivities, whereas the solid one has the lowest.
基金Funded by the National Key Basic Research and Development Program(973 Program),China(Grant 2014CB239000)China National Science and Technology Major Project(Grant 2011ZX05001)
文摘The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil & gas resources.Unconventional oil & gas plays an increasingly important role in our energy demand.Tight gas,CBM,heavy oil and asphaltic sand have served as a key domain of exploration & development,with tight oil becoming a 'bright spot' domain and shale gas becoming a 'hotspot' domain.China has made great breakthroughs in unconventional oil & gas resources,such as tight gas,shale gas,tight oil and CBM,and great progress in oil shale,gas hydrate,heavy oil and oil sand.China has an estimated(223-263)×10~8t of unconventional oil resources and(890-1260)×l0^(12)m^3 of gas resources.China has made a breakthrough for progress in unconventional oil & gas study.New progress achieved in fine-grained sedimentary studies related to continental open lacustrine basin large-scale shallow-water delta sand bodies,lacustrine basin central sandy clastic flow sediments and marine-continental fine-grained sediments provide a theoretical basis for the formation and distribution of basin central reservoir bodies.Great breakthroughs have been made in unconventional reservoir geology in respect of research methodology & technology,multi-scale data merging and physical simulation of formation conditions.Overall characterization of unconventional reservoirs via multi-method and multi-scale becomes increasingly popular and facilitates the rapid development of unconventional oil & gas geological theory,method and technology.The formation of innovative,continuous hydrocarbon accumulation theory,the establishment of the framework of the unconventional oil & gas geological theory system,and the determination of the implications,geological feature,formation mechanism,distribution rule and core technology of unconventional oil& gas geological study lays a theoretical foundation for extensive unconventional oil & gas exploration and development.Theories and technologies of unconventional oil & gas exploration and development developed rapidly,including some key evaluation techniques such as 'sweet spot zone' integrated evaluation and a six-property evaluation technique that uses hydrocarbon source,lithology,physical property,brittleness,hydrocarbon potential and stress anisotropy,and some key development &engineering technologies including micro-seismic monitoring,horizontal drilling & completion and "factory-like" operation pattern, "man-made reservoir" development,which have facilitated the innovative development of unconventional oil & gas.These breakthroughs define a new understanding in four aspects:①theoretical innovation;② key technologies;③ complete market mechanism and national policy support;and ④ well-developed ground infrastructure,which are significant for prolonging the life cycle of petroleum industry,accelerating the upgrade and development of theories and technologies and altering the global traditional energy structure.
基金supported by the National Research Laboratory Program, Korea Science and Engineering Foundation Grant (Grant No. R0A-2007-000-20012-0)the Korea Research Foundation Grant (Grant No. KRF-2006-005-J03301)+1 种基金J. Hong was partially supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (Grant No. KRP-2006-214-D00056)J. R. Lukes acknowledges partial support from the National Science Foundation (Grant No.CBET-0424101)
文摘Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves,which have an effect on the coloration of Morpho butterflies and enhance the hydrophobicity of natural surfaces.We investigated the micro-scale and nano-scale structures on the wing surfaces of insects and found that the hierarchical multiple roughness structures help in enhancing the hydrophobicity.After examining 10 orders and 24 species of flying Pterygotan insects,we found that micro-scale and nano-scale structures typically exist on both the upper and lower wing surfaces of flying insects.The tiny structures such as denticle or setae on the insect wings enhance the hydrophobicity,thereby enabling the wings to be cleaned more easily.And the hydrophobic insect wings undergo a transition from Cassie to Wenzel states at pitch/size ratio of about 20.In order to examine the wetting characteristics on a rough surface,a biomimetic surface with micro-scale pillars is fabricated on a silicon wafer, which exhibits the same behavior as the insect wing,with the Cassie-Wenzel transition occurring consistently around a pitch/width value of 20.