The development of space telecommunications in recent years has necessitated the design and the realization of compact, high-performance equipment operating at increasingly high frequencies. The use of high-precision ...The development of space telecommunications in recent years has necessitated the design and the realization of compact, high-performance equipment operating at increasingly high frequencies. The use of high-precision radars for surveillance, detection and mobile communication systems orients research toward the antennas to electronic sweep. In this article, we present a microstrip leaky-wave antenna with periodic patches. Its design is based on an integral formulation solved by software using HFSS finite elements. A parametric study of this antenna is validated by simulations and compared with other results found in the literature. Analysis of the antenna’s radiation parameters shows that the main beam direction and levels of minor’s lobes can be controlled from these geometrical parameters. The interest of this study is to meet the requirements of antennas dedicated telecommunications systems.展开更多
The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi- infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory...The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi- infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory through an analytical solution procedure. The expressions for potentials are obtained by the method of variation separation, in which the unknown coefficients are determined by the boundary condition and matching requirement on the interface. The effects of the position of the hole and the gap between the body and side wall on hydrodynamic characteristics are investigated. Some resonance is observed like piston motion in a moon pool and sloshing in a closed tank because of the existence of restricted fluid domains.展开更多
The distributions of the wave-induced radiation stress tensor over depth are studied by us- ing the linear wave theory, which are divided into three regions, i. e., above the mean water level, be- low the wave trough ...The distributions of the wave-induced radiation stress tensor over depth are studied by us- ing the linear wave theory, which are divided into three regions, i. e., above the mean water level, be- low the wave trough level, and between these two levels. The computational expressions of the wave-in- duced radiation stress tensor at the arbitrary wave angle are established by means of the Eulerian coordi- nate transformation, and the asymptotic forms for deep and shallow water are also presented. The verti- cal variations of a 30°incident wave-induced radiation stress tensor in deep water, intermediate water and shallow water are calculated respectively. The following conclusions are obtained from computations. The wave-induced radiation stress tensor below the wave trough level is induced by the water wave parti- cle velocities only, whereas both the water wave particle velocities and the wave pressure contribute to the tensor above the wave trough level. The vertical variations of the wave-induced radiation stress ten- sor are influenced substantially by the velocity component in the direction of wave propagation. The dis- tributions of the wave-induced radiation stress tensor over depth are nonuiniform and the proportion of the tensor below the wave trough level becomes considerable in the shallow water. From the water surface to the seabed, the reversed variations occur for the predominant tensor components.展开更多
The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary condition...The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.展开更多
Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various ...Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various plasma parameters. The radiation patterns are shown. Results show that the radiation patterns are controllable by flexibly changing the plasma length and other parameters in comparison to the metal monopole antenna. It is meaningful and instructional for the optimization of the plasma antenna design.展开更多
By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at t...By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed. Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.展开更多
The higher-order boundary element method is applied to the numerical simulation of nonlinear waves radiated by a forced oscillating fully submerged vertical circular cylinder. In this time-domain approach, the mixed b...The higher-order boundary element method is applied to the numerical simulation of nonlinear waves radiated by a forced oscillating fully submerged vertical circular cylinder. In this time-domain approach, the mixed boundary value problem based on an Eulerian description at each time step is solved using the higher order boundary element method. The 4th-order Runge–Kutta scheme is adopted to update the free water surface boundary conditions expressed in a Lagrangian formulation. Following completion of the numerical model, the problems of radiation(heave) of water waves by a submerged sphere in finite depth are simulated and the computed results are verified against the published numerical results in order to ensure the effectiveness of the model. The validated numerical model is then applied to simulate the nonlinear wave radiation by a fully submerged vertical circular cylinder undergoing various forced sinusoidal motion in otherwise still conditions. The numerical results are obtained for a series of wave radiation problems; the completely submerged cylinder is placed in surging, heaving and combined heave-pitching motions with different drafts, amplitudes and frequencies. The corresponding numerical results of the cylinder motions, wave profiles, and hydrodynamic forces are then compared and explained for all the cases.展开更多
A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the rad...A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the radiation sound field of the spherical sound source is equivalent to the linear superposition of the radiation sound field of several internal point sound sources,and then the radiated noise induced by spherical sound source can be predicted quickly.The accuracy and efficiency of the method are verified by comparing with the numerical results of finite element method,and the rapid prediction of underwater radiated noise of cylindrical shell is carried out based on the method.The results show that compared with the finite element method,the relative error of the calculation results under different simulation conditions does not exceed 0.1%,and the calculation time is about 1/10 of the finite element method,so this method can be used to solve the radiated noise of shallow underwater targets.展开更多
A new method for the calculation of wave radiation stress is proposed by linking the expressions for wave radiation stress with the variables in the parabolic mild slope equation. The governing equations are solved nu...A new method for the calculation of wave radiation stress is proposed by linking the expressions for wave radiation stress with the variables in the parabolic mild slope equation. The governing equations are solved numerically by the finite difference method. Numerical results show that the new method is accurate enough, can be efficiently solved with little programming effort, and can be applied to the calculation of wave radiation stress for large coastal areas.展开更多
This paper demonstrates the analysis of antenna pattern and gain for different designs of full-wave dipole antenna feeding techniques. Seven such techniques were studied and analyzed;symmetrical dual feeding in phase,...This paper demonstrates the analysis of antenna pattern and gain for different designs of full-wave dipole antenna feeding techniques. Seven such techniques were studied and analyzed;symmetrical dual feeding in phase, symmetrical dual feeding out of phase, asymmetrical dual feeding in phase, asymmetrical dual feeding out of phase, symmetrical triple feeding in phase and symmetrical triple feeding out of phase. Symmetrical dual feeding in phase produced high gain as compared to the single and center-fed antennas. An improvement of about 3 to 3.5 dB was achieved comparing to center tap fed and off center fed. It was found that an asymmetrical dual feeding in-phase provides good performance, considering the directivity, pattern, and input impedance. A 2.46 dB gain has been attained. It was found that a symmetrical triple feeding provides an overall best performance with respect to gain, radiation pattern, beam width and input impedance.展开更多
BACKGROUND Several studies have demonstrated the feasibility and effectiveness of using ultrasound elastography to assess liver tissue stiffness.Virtual touch imaging quantification(VTIQ)based on acoustic radiation fo...BACKGROUND Several studies have demonstrated the feasibility and effectiveness of using ultrasound elastography to assess liver tissue stiffness.Virtual touch imaging quantification(VTIQ)based on acoustic radiation force impulse imaging has been developed as a latest and noninvasive method for assessing liver stiffness in children.AIM To determine the standard value in healthy children,and to identify possible factors that might influence the VTIQ measurement.METHODS With the ethical approval,202 children between 1 month and 15 years old were included in this study.None of them had any liver or systematic diseases.All children had a normal ultrasound scan and normal body mass index(BMI)range.The subjects were divided into four age and BMI groups.The effects of gender,age,liver lobe,measurement depth,and BMI on liver elasticity were investigated.RESULTS A significant correlation was found between age and shear wave velocity(SWV)value.At measurement depths of 1.5 cm and 2.0 cm in the left lobe,there were significant differences among the age groups.SWV values were significantly negatively correlated with the measurement depth.Gender,liver lobe,and BMI showed no significant effect on the SWV values.Age and BMI may influence the quality of the elastogram.CONCLUSION VTIQ is a noninvasive technique that is feasible to measure liver stiffness in children.The afore-mentioned velocity value obtained utilizing VTIQ method could be used as reference value for normal liver stiffness in children.展开更多
In this study, we consider the heat-induced withdrawal reflex caused by exposure to an electromagnetic beam. We propose a concise dose-response relation for predicting the occurrence of withdrawal reflex from a given ...In this study, we consider the heat-induced withdrawal reflex caused by exposure to an electromagnetic beam. We propose a concise dose-response relation for predicting the occurrence of withdrawal reflex from a given spatial temperature profile. Our model is distilled from sub-step components in the ADT CHEETEH-E model developed at the Institute for Defense Analyses. Our model has only two parameters: the activation temperature of nociceptors and the critical threshold on the activated volume. When the spatial temperature profile is measurable, the two parameters can be determined from test data. We connect this dose-response relation to a temperature evolution model for electromagnetic heating. The resulting composite model governs the process from the electromagnetic beam deposited on the skin to the binary outcome of subject’s reflex response. We carry out non-dimensionalization in the time evolution model. The temperature solution of the non-dimensional system is the product of the applied power density and a parameter-free function. The effects of physical parameters are contained in non-dimensional time and depth. Scaling the physical temperature distribution into a parameter-free function greatly simplifies the analytical solution, and helps to pinpoint the effects of beam spot area and applied power density. With this formulation, we study the theoretical behaviors of the system, including the time of reflex, effect of heat conduction, biological latency in observed reflex, energy consumption by the time of reflex, and the strategy of selecting test conditions in experiments for the purpose of inferring model parameters from test data.展开更多
A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The t...A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The two- dimensional intensity distribution and the time evolution of speckles in different probe locations are obtained. The fluctuation of speckle intensity tracks the acoustic-radiation-force shear wave propagation, and especially the reduction of speckle intensity implies attenuation of shear wave. Then, the shear wave velocity is estimated quantitatively on the basis of the time-to-peak algorithm and linear regression processing. The results reveal that a smaller sampling interval yields higher estimation precision and the shear wave velocity is estimated more efficiently by using speckle intensity difference than by using speckle contrast difference according to the estimation error. Hence, the shear wave velocity is estimated to be 2.25 m/s with relatively high accuracy for the estimation error reaches the minimum (0.071).展开更多
We report a representative concurrent event of four wave modes at L≈5.0,including electrostatic electron cyclotron harmonic(ECH)waves,exohiss,magnetosonic(MS)waves,and electromagnetic ion cyclotron(EMIC)waves,based o...We report a representative concurrent event of four wave modes at L≈5.0,including electrostatic electron cyclotron harmonic(ECH)waves,exohiss,magnetosonic(MS)waves,and electromagnetic ion cyclotron(EMIC)waves,based on the observations from Van Allen Probe A on October 15,2015.The diffusion coefficients induced by these waves are calculated by using both the Full Diffusion Code and test particle simulations.Moreover,the scattering effects of these waves on energetic electrons are simulated by using a two-dimensional Fokker-Planck diffusion model.The results show that ECH waves mainly scatter low-pitch-angle(<20°)electrons at 0.1-10 keV;exohiss can significantly scatter hundreds of kiloelectron volt electrons to form a reversed energy spectrum;MS waves mainly affect high-pitch-angle electrons(>60°);and EMIC waves scatter only>5 MeV electrons.The combined scattering effects of exohiss and MS waves are stronger than those of exohiss alone.The top-hat pitch angle distributions produced by exohiss are relaxed after adding the effect of MS waves.Because the energies of electrons scattered by ECH waves and EMIC waves are much lower and higher than those scattered by exohiss and MS waves,respectively,the combined scattering effects with the addition of ECH and EMIC waves show little difference from the results for the combination of MS waves and exohiss.These results suggest that distinct wave modes can occur simultaneously and scatter electrons in combination or individually,which requires careful consideration in future global simulations of the complex dynamics of radiation belt energetic electrons.展开更多
In order to predict acoustic radiation from a structure in waveguide, a method based on wave superposition is proposed, in which the free-space Green's function is used to match the strength of equivalent sources. In...In order to predict acoustic radiation from a structure in waveguide, a method based on wave superposition is proposed, in which the free-space Green's function is used to match the strength of equivalent sources. In addition, in order to neglect the effect of sound reflection from boundaries, necessary treatment is conducted, which makes the method more efficient. Moreover, this method is combined with the sound propagation algorithms to predict the sound radiated from a cylindrical shell in waveguide. Numerical simulations show the effect of how reflections can be neglected if the distance between the structure and the boundary exceeds the maximum linear dimension of the structure. It also shows that the reflection from the bottom of the waveguide can be approximated by plane wave conditionally. The proposed method is more robust and efficient in computation, which can be used to predict the acoustic radiation in waveguide.展开更多
The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living orga...The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living organisms.It irradiates a biological sample placed in a 30×30×50 cm^(3)cell with electromagnetic waves in the 3.15-mm-wavelength region(with an output of≥1 W)and analyzes the temperature change of the sample.A vacuum electronic device-based coupled-cavity backward-wave oscillator converts the electron energy of the electron beam into radiofrequency(RF)energy and radiates it to the target through an antenna,increasing the temperature through the absorption of RF energy in the skin.The system causes pain and ultimately reduces combat power.A cell-type continuous electromagnetic radiation system consisting of four parts—an electromagnetic-wave generator,a highvoltage power supply,a test cell,and a system controller—generates an RF signal of≥1 W in a continuous waveform at a 95-GHz center frequency,as well as a chemical solution with a dielectric constant similar to that of the skin of a living organism.An increase of 5°C lasting approximately 10 s was confirmed through an experiment.展开更多
The effects of wave-induced radiation stress on storm surge were simulated during Typhoon Saomai using a wave-current coupled model based on ROMS (Regional Ocean Modeling System) ocean model and SWAN (Simulating Wa...The effects of wave-induced radiation stress on storm surge were simulated during Typhoon Saomai using a wave-current coupled model based on ROMS (Regional Ocean Modeling System) ocean model and SWAN (Simulating Waves Nearshore) wave model. The results show that radiation stress can cause both set-up and set-down in the storm surge. Wave-induced set-up near the coast can be explained by decreasing significant wave heights as the waves propagate shoreward in an approximately uniform direction; wave-induced set-down far from the coast can be explained by the waves propagating in an approximately uniform direction with increasing significant wave heights. The shoreward radiation stress is the essential reason for the wave-induced set-up along the coast. The occurrence of set-down can be also explained by the divergence of the radiation stress. The maximum wave-induced set-up occurs on the right side of the Typhoon path, whereas the maximum wave induced set-down occurs on the left side.展开更多
After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinat...After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy’s wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.展开更多
Wave radiation stress is the main driving force of wave-induced near-shore currents. It is directly related to the hydrodynamic characteristics of near-shore current whether the calculation of wave radiation stress is...Wave radiation stress is the main driving force of wave-induced near-shore currents. It is directly related to the hydrodynamic characteristics of near-shore current whether the calculation of wave radiation stress is accurate or not. Irregular waves are more capable of reacting wave motion in the ocean compared to regular waves. Therefore,the calculation of the radiation stress under irregular waves will be more able to reflect the wave driving force in the actual near-shore current. Exact solution and approximate solution of the irregular wave radiation stress are derived in this paper and the two kinds of calculation methods are compared. On the basis of this,the experimental results are used to further verify the calculation of wave energy in the approximate calculation method. The results show that the approximate calculation method of irregular wave radiation stress has a good accuracy under the condition of narrow-band spectrum,which can save a lot of computing time,and thus improve the efficiency of calculation. However,the exact calculation method can more accurately reflect the fluctuation of radiation stress at each moment and each location.展开更多
The water surface wave radiation problem caused by multiple cylinders oscillating with identical frequency was solved in frequency domain by the boundary element method using simple Green's function in the inner w...The water surface wave radiation problem caused by multiple cylinders oscillating with identical frequency was solved in frequency domain by the boundary element method using simple Green's function in the inner water region combined with the eigenfunction expansions in the outer water region. The numerical method is suitable to the situation of constant depth of outer regions and complicated boundary conditions of inner region, while the oscillating modes, motion amplitudes and phases of the cylinders may be different from one another. The second order potential and hydrodynamic forces acting on each cylinder were evaluated completely by perturbation method. Compared with the case of single oscillating cylinder, hydrodynamic interference phenomena, such as wave resonance and negative added mass, of the radiation problem due to the oscillatory motions of multiple cylinders are identified which is of engineering importance to the design of moorings and other facilities involving multiple structures.展开更多
文摘The development of space telecommunications in recent years has necessitated the design and the realization of compact, high-performance equipment operating at increasingly high frequencies. The use of high-precision radars for surveillance, detection and mobile communication systems orients research toward the antennas to electronic sweep. In this article, we present a microstrip leaky-wave antenna with periodic patches. Its design is based on an integral formulation solved by software using HFSS finite elements. A parametric study of this antenna is validated by simulations and compared with other results found in the literature. Analysis of the antenna’s radiation parameters shows that the main beam direction and levels of minor’s lobes can be controlled from these geometrical parameters. The interest of this study is to meet the requirements of antennas dedicated telecommunications systems.
基金supported by the Lloyd's Register Educational Trust (The LRET) through the joint centre involving University College London, Shanghai Jiao Tong University and Harbin Engineering University
文摘The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi- infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory through an analytical solution procedure. The expressions for potentials are obtained by the method of variation separation, in which the unknown coefficients are determined by the boundary condition and matching requirement on the interface. The effects of the position of the hole and the gap between the body and side wall on hydrodynamic characteristics are investigated. Some resonance is observed like piston motion in a moon pool and sloshing in a closed tank because of the existence of restricted fluid domains.
基金The project was supported by the Research Fund for the Doctoral Program of Higher Education of China under contractNo. 9802940
文摘The distributions of the wave-induced radiation stress tensor over depth are studied by us- ing the linear wave theory, which are divided into three regions, i. e., above the mean water level, be- low the wave trough level, and between these two levels. The computational expressions of the wave-in- duced radiation stress tensor at the arbitrary wave angle are established by means of the Eulerian coordi- nate transformation, and the asymptotic forms for deep and shallow water are also presented. The verti- cal variations of a 30°incident wave-induced radiation stress tensor in deep water, intermediate water and shallow water are calculated respectively. The following conclusions are obtained from computations. The wave-induced radiation stress tensor below the wave trough level is induced by the water wave parti- cle velocities only, whereas both the water wave particle velocities and the wave pressure contribute to the tensor above the wave trough level. The vertical variations of the wave-induced radiation stress ten- sor are influenced substantially by the velocity component in the direction of wave propagation. The dis- tributions of the wave-induced radiation stress tensor over depth are nonuiniform and the proportion of the tensor below the wave trough level becomes considerable in the shallow water. From the water surface to the seabed, the reversed variations occur for the predominant tensor components.
基金This research is supported by the National Science Council of Taiwan under the grant of NSC 86-2611-E-006-019.
文摘The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.
文摘Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various plasma parameters. The radiation patterns are shown. Results show that the radiation patterns are controllable by flexibly changing the plasma length and other parameters in comparison to the metal monopole antenna. It is meaningful and instructional for the optimization of the plasma antenna design.
基金Project supported by the National Natural Science Foundation of China (No. 10172038).
文摘By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed. Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.
文摘The higher-order boundary element method is applied to the numerical simulation of nonlinear waves radiated by a forced oscillating fully submerged vertical circular cylinder. In this time-domain approach, the mixed boundary value problem based on an Eulerian description at each time step is solved using the higher order boundary element method. The 4th-order Runge–Kutta scheme is adopted to update the free water surface boundary conditions expressed in a Lagrangian formulation. Following completion of the numerical model, the problems of radiation(heave) of water waves by a submerged sphere in finite depth are simulated and the computed results are verified against the published numerical results in order to ensure the effectiveness of the model. The validated numerical model is then applied to simulate the nonlinear wave radiation by a fully submerged vertical circular cylinder undergoing various forced sinusoidal motion in otherwise still conditions. The numerical results are obtained for a series of wave radiation problems; the completely submerged cylinder is placed in surging, heaving and combined heave-pitching motions with different drafts, amplitudes and frequencies. The corresponding numerical results of the cylinder motions, wave profiles, and hydrodynamic forces are then compared and explained for all the cases.
基金Foundation item:This study was financially supported by the National Natural Science Foundation of China(Grant No.52101351)。
文摘A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the radiation sound field of the spherical sound source is equivalent to the linear superposition of the radiation sound field of several internal point sound sources,and then the radiated noise induced by spherical sound source can be predicted quickly.The accuracy and efficiency of the method are verified by comparing with the numerical results of finite element method,and the rapid prediction of underwater radiated noise of cylindrical shell is carried out based on the method.The results show that compared with the finite element method,the relative error of the calculation results under different simulation conditions does not exceed 0.1%,and the calculation time is about 1/10 of the finite element method,so this method can be used to solve the radiated noise of shallow underwater targets.
基金This subject was financially supported by the National Natural Science Foundation of China(Grant No.59839330 and No.49910161985)
文摘A new method for the calculation of wave radiation stress is proposed by linking the expressions for wave radiation stress with the variables in the parabolic mild slope equation. The governing equations are solved numerically by the finite difference method. Numerical results show that the new method is accurate enough, can be efficiently solved with little programming effort, and can be applied to the calculation of wave radiation stress for large coastal areas.
文摘This paper demonstrates the analysis of antenna pattern and gain for different designs of full-wave dipole antenna feeding techniques. Seven such techniques were studied and analyzed;symmetrical dual feeding in phase, symmetrical dual feeding out of phase, asymmetrical dual feeding in phase, asymmetrical dual feeding out of phase, symmetrical triple feeding in phase and symmetrical triple feeding out of phase. Symmetrical dual feeding in phase produced high gain as compared to the single and center-fed antennas. An improvement of about 3 to 3.5 dB was achieved comparing to center tap fed and off center fed. It was found that an asymmetrical dual feeding in-phase provides good performance, considering the directivity, pattern, and input impedance. A 2.46 dB gain has been attained. It was found that a symmetrical triple feeding provides an overall best performance with respect to gain, radiation pattern, beam width and input impedance.
基金Supported by Science and Technology Foundation of Pudong New District,No.PKJ2015-Y05)Medical and Industrial Interdisciplinary Fund of Shanghai Jiao Tong University,No.YG2016MS30+1 种基金General Program of Shanghai Health and Family Planning Commission,No.201740095Guiding Project of Shanghai Science and Technology Commission,No.19411965400
文摘BACKGROUND Several studies have demonstrated the feasibility and effectiveness of using ultrasound elastography to assess liver tissue stiffness.Virtual touch imaging quantification(VTIQ)based on acoustic radiation force impulse imaging has been developed as a latest and noninvasive method for assessing liver stiffness in children.AIM To determine the standard value in healthy children,and to identify possible factors that might influence the VTIQ measurement.METHODS With the ethical approval,202 children between 1 month and 15 years old were included in this study.None of them had any liver or systematic diseases.All children had a normal ultrasound scan and normal body mass index(BMI)range.The subjects were divided into four age and BMI groups.The effects of gender,age,liver lobe,measurement depth,and BMI on liver elasticity were investigated.RESULTS A significant correlation was found between age and shear wave velocity(SWV)value.At measurement depths of 1.5 cm and 2.0 cm in the left lobe,there were significant differences among the age groups.SWV values were significantly negatively correlated with the measurement depth.Gender,liver lobe,and BMI showed no significant effect on the SWV values.Age and BMI may influence the quality of the elastogram.CONCLUSION VTIQ is a noninvasive technique that is feasible to measure liver stiffness in children.The afore-mentioned velocity value obtained utilizing VTIQ method could be used as reference value for normal liver stiffness in children.
文摘In this study, we consider the heat-induced withdrawal reflex caused by exposure to an electromagnetic beam. We propose a concise dose-response relation for predicting the occurrence of withdrawal reflex from a given spatial temperature profile. Our model is distilled from sub-step components in the ADT CHEETEH-E model developed at the Institute for Defense Analyses. Our model has only two parameters: the activation temperature of nociceptors and the critical threshold on the activated volume. When the spatial temperature profile is measurable, the two parameters can be determined from test data. We connect this dose-response relation to a temperature evolution model for electromagnetic heating. The resulting composite model governs the process from the electromagnetic beam deposited on the skin to the binary outcome of subject’s reflex response. We carry out non-dimensionalization in the time evolution model. The temperature solution of the non-dimensional system is the product of the applied power density and a parameter-free function. The effects of physical parameters are contained in non-dimensional time and depth. Scaling the physical temperature distribution into a parameter-free function greatly simplifies the analytical solution, and helps to pinpoint the effects of beam spot area and applied power density. With this formulation, we study the theoretical behaviors of the system, including the time of reflex, effect of heat conduction, biological latency in observed reflex, energy consumption by the time of reflex, and the strategy of selecting test conditions in experiments for the purpose of inferring model parameters from test data.
基金Supported by the National Key Scientific Instrument and Equipment Development Projects of China under Grant No 81127901the National Natural Science Foundation of China under Grant Nos 61372017 and 30970828
文摘A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The two- dimensional intensity distribution and the time evolution of speckles in different probe locations are obtained. The fluctuation of speckle intensity tracks the acoustic-radiation-force shear wave propagation, and especially the reduction of speckle intensity implies attenuation of shear wave. Then, the shear wave velocity is estimated quantitatively on the basis of the time-to-peak algorithm and linear regression processing. The results reveal that a smaller sampling interval yields higher estimation precision and the shear wave velocity is estimated more efficiently by using speckle intensity difference than by using speckle contrast difference according to the estimation error. Hence, the shear wave velocity is estimated to be 2.25 m/s with relatively high accuracy for the estimation error reaches the minimum (0.071).
基金supported by the National Natural Science Foundation of China (Grant Nos. 42188101, 42174190, 42025404, and 41904143)the Fundamental Research Funds for the Central Universities (Grant No. 2042021kf0016)+2 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000)the pre-research projects on Civil Aerospace Technologies funded by the China National Space Administration (Grant Nos. D020308 and D020104)the China Postdoctoral Science Foundation Project (Grant No. 2019M662700)
文摘We report a representative concurrent event of four wave modes at L≈5.0,including electrostatic electron cyclotron harmonic(ECH)waves,exohiss,magnetosonic(MS)waves,and electromagnetic ion cyclotron(EMIC)waves,based on the observations from Van Allen Probe A on October 15,2015.The diffusion coefficients induced by these waves are calculated by using both the Full Diffusion Code and test particle simulations.Moreover,the scattering effects of these waves on energetic electrons are simulated by using a two-dimensional Fokker-Planck diffusion model.The results show that ECH waves mainly scatter low-pitch-angle(<20°)electrons at 0.1-10 keV;exohiss can significantly scatter hundreds of kiloelectron volt electrons to form a reversed energy spectrum;MS waves mainly affect high-pitch-angle electrons(>60°);and EMIC waves scatter only>5 MeV electrons.The combined scattering effects of exohiss and MS waves are stronger than those of exohiss alone.The top-hat pitch angle distributions produced by exohiss are relaxed after adding the effect of MS waves.Because the energies of electrons scattered by ECH waves and EMIC waves are much lower and higher than those scattered by exohiss and MS waves,respectively,the combined scattering effects with the addition of ECH and EMIC waves show little difference from the results for the combination of MS waves and exohiss.These results suggest that distinct wave modes can occur simultaneously and scatter electrons in combination or individually,which requires careful consideration in future global simulations of the complex dynamics of radiation belt energetic electrons.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 11274080, and the Young Scientists Fund of the National Natural Science Foundation of China under Grant No. 11404313.
文摘In order to predict acoustic radiation from a structure in waveguide, a method based on wave superposition is proposed, in which the free-space Green's function is used to match the strength of equivalent sources. In addition, in order to neglect the effect of sound reflection from boundaries, necessary treatment is conducted, which makes the method more efficient. Moreover, this method is combined with the sound propagation algorithms to predict the sound radiated from a cylindrical shell in waveguide. Numerical simulations show the effect of how reflections can be neglected if the distance between the structure and the boundary exceeds the maximum linear dimension of the structure. It also shows that the reflection from the bottom of the waveguide can be approximated by plane wave conditionally. The proposed method is more robust and efficient in computation, which can be used to predict the acoustic radiation in waveguide.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2021M2E8A1038938,No.NRF-2021R1F1A1048374,and No.NRF-2016R1A3B1908336)supported by a grant of the Korea Institute of Radiological and Medical Sciences(KIRAMS),funded by the Ministry of Science and ICT(MSIT),Republic of Korea(No.50051—2021,No.50623—2021)。
文摘The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living organisms.It irradiates a biological sample placed in a 30×30×50 cm^(3)cell with electromagnetic waves in the 3.15-mm-wavelength region(with an output of≥1 W)and analyzes the temperature change of the sample.A vacuum electronic device-based coupled-cavity backward-wave oscillator converts the electron energy of the electron beam into radiofrequency(RF)energy and radiates it to the target through an antenna,increasing the temperature through the absorption of RF energy in the skin.The system causes pain and ultimately reduces combat power.A cell-type continuous electromagnetic radiation system consisting of four parts—an electromagnetic-wave generator,a highvoltage power supply,a test cell,and a system controller—generates an RF signal of≥1 W in a continuous waveform at a 95-GHz center frequency,as well as a chemical solution with a dielectric constant similar to that of the skin of a living organism.An increase of 5°C lasting approximately 10 s was confirmed through an experiment.
基金supported by the Special Funding of Marine Science StudyState Ocean Administration under contract No.20090513-2+2 种基金the National Natural Science Foundation of China under contract No.40976008Innovation Project from the Chinese Academy of Sciences under contract No.KZCX2-EW-209the Key program of Knowledge Innovation Project of Chinese Academyof Sciences under contract No.KZCX1-YW-12
文摘The effects of wave-induced radiation stress on storm surge were simulated during Typhoon Saomai using a wave-current coupled model based on ROMS (Regional Ocean Modeling System) ocean model and SWAN (Simulating Waves Nearshore) wave model. The results show that radiation stress can cause both set-up and set-down in the storm surge. Wave-induced set-up near the coast can be explained by decreasing significant wave heights as the waves propagate shoreward in an approximately uniform direction; wave-induced set-down far from the coast can be explained by the waves propagating in an approximately uniform direction with increasing significant wave heights. The shoreward radiation stress is the essential reason for the wave-induced set-up along the coast. The occurrence of set-down can be also explained by the divergence of the radiation stress. The maximum wave-induced set-up occurs on the right side of the Typhoon path, whereas the maximum wave induced set-down occurs on the left side.
文摘After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy’s wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.
基金The National Natural Science Foundation of China under contract No.51879237the General Project of Zhoushan Science and Technology Bureau under contract No.2019C21026+2 种基金the General Scientific Research Project of Zhejiang Education Department under contract No.Y201839488the Fundamental Research Funds for the Provincial Universities under contract No.2019JZ00011the foundation of State Key Laboratory of Ocean Engineering,Shanghai Jiaotong University under contract No.1909.
文摘Wave radiation stress is the main driving force of wave-induced near-shore currents. It is directly related to the hydrodynamic characteristics of near-shore current whether the calculation of wave radiation stress is accurate or not. Irregular waves are more capable of reacting wave motion in the ocean compared to regular waves. Therefore,the calculation of the radiation stress under irregular waves will be more able to reflect the wave driving force in the actual near-shore current. Exact solution and approximate solution of the irregular wave radiation stress are derived in this paper and the two kinds of calculation methods are compared. On the basis of this,the experimental results are used to further verify the calculation of wave energy in the approximate calculation method. The results show that the approximate calculation method of irregular wave radiation stress has a good accuracy under the condition of narrow-band spectrum,which can save a lot of computing time,and thus improve the efficiency of calculation. However,the exact calculation method can more accurately reflect the fluctuation of radiation stress at each moment and each location.
文摘The water surface wave radiation problem caused by multiple cylinders oscillating with identical frequency was solved in frequency domain by the boundary element method using simple Green's function in the inner water region combined with the eigenfunction expansions in the outer water region. The numerical method is suitable to the situation of constant depth of outer regions and complicated boundary conditions of inner region, while the oscillating modes, motion amplitudes and phases of the cylinders may be different from one another. The second order potential and hydrodynamic forces acting on each cylinder were evaluated completely by perturbation method. Compared with the case of single oscillating cylinder, hydrodynamic interference phenomena, such as wave resonance and negative added mass, of the radiation problem due to the oscillatory motions of multiple cylinders are identified which is of engineering importance to the design of moorings and other facilities involving multiple structures.