As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufact...As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.展开更多
The fundamental research and industry, trials of the third generation automobile steel QP980 were introduced in this paper, including chemical ingredient, mechanical properties, microstructure, forming limit and basic...The fundamental research and industry, trials of the third generation automobile steel QP980 were introduced in this paper, including chemical ingredient, mechanical properties, microstructure, forming limit and basic perform- ance parameters. The application of QP steel of the B-pillar was researched, and the QP980, DP600 and hot forming steel were compared in the aspect of formability, safety and cost. The resuhs showed that the QP980 replacing DP600 steel single piece carl reduce the weight by 2.4 kg. The security and performance is basically the same as that of hot forming steel using 22MnB5, and the cost is reduced by 30 %.展开更多
The variety,inner quality and surface quality of low-alloy spring steel wire rod for domestic automobile is summarized in detail.And according to commercial low-alloy spring steel wire rod variety, product quality lev...The variety,inner quality and surface quality of low-alloy spring steel wire rod for domestic automobile is summarized in detail.And according to commercial low-alloy spring steel wire rod variety, product quality level and its actual application situation on automobile supplied by present industrially developed country metallurgy enterprises,it is pointed that the variety of low-alloy spring steel wire rod for domestic automobile can't satisfy the requirements of automobile industry development,compare with overseas advanced technology,product quality has the following gaps:the first is that steel purity is low,the control level of non-metallic inclusions is not steady,there is often large grain difficult deforming non-deformation inclusions existing,the control level of steel purity has big difference,the level of large steel factory is high,but its steady has a large gap compare with foreign advanced level,not to mention small steel factory which research and development powder is low.The second is surface complete decarburization can' t be avoided completely.The third is that surface defects are more.The fourth is that composition segregation and structure segregation are not steady,steel wire can't be drawn normally when the segregation is serious. In all,the segregation of 55SiCrA is superior to 60Si2MnA obviously.The industrialization of domestic high level low-alloy spring steel wire rod can't seek quick success and instant benefits,independent innovation perseveringly must be adopted,the success may be reached after master core technologies and adopt the science way of step by step.展开更多
The inorganic-lubricant-coated galvannealed automobile steel sheet is a new product that improves the press formability of automobile body panels.In this paper,the production process,physical and chemical properties,p...The inorganic-lubricant-coated galvannealed automobile steel sheet is a new product that improves the press formability of automobile body panels.In this paper,the production process,physical and chemical properties,press formability,and corrosion resistance of this new automobile steel sheet were discussed.Test results show that this inorganic solid-lubricant galvannealed automobile steel sheet has good surface friction characteristics and press formability.This product also meets the automobile industry’s requirements for press formability,phosphate pro-perties,and corrosion resistance after coating.展开更多
Austenite grain size is an important influence factor for ductility of steel at high temperatures during continuous casting. Thermodynamic and kinetics calculations were performed to analyze the characteristics of Ti(...Austenite grain size is an important influence factor for ductility of steel at high temperatures during continuous casting. Thermodynamic and kinetics calculations were performed to analyze the characteristics of Ti(C,N) precipitates formed during the continuous casting of micro-alloyed steel. Based on Andersen-Grong equation, a coupling model of second phase precipitation and austenite grain growth has been established, and the influence of second precipitates on austenite grain growth under different cooling rates is discussed. Calculations show that the final sizes of austenite grains are 2.155, 1.244, 0.965, 0.847 and 0.686 mm, respectively, under the cooling rate of 1, 3, 5, 7, and 10 ℃·s^(-1), when ignoring the pinning effect of precipitation on austenite growth. Whereas, if taking the pinning effect into consideration, the grain growth remains stable from 1,350 ℃, the calculated final sizes of austenite grains are 1.46, 1.02, 0.80, 0.67 and 0.57 mm, respectively. The sizes of final Ti(C,N) precipitates are 137, 79, 61, 51 and 43 nm, respectively, with the increase of cooling rate from 1 to 10 ℃·s^(-1). Model validation shows that the austenite size under different cooling rates coincided with the calculation results. Finally, the corresponding measures to strengthen cooling intensity at elevated temperature are proposed to improve the ductility and transverse crack of slab.展开更多
Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperat...Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperatures on microstructuralstate of austenite were discussed. Corresponding to parameter Z in the dynamic recrystallization diagram, parameterY was then introduced to simplify static recrystallization diagrams.展开更多
The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phas...The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phase transformation temperature of the steel at various cooling rates was detected. The microstmcture was observed by optical microscope (OM) and scanning electronic microscope ( SEM), and its Vickers hardness was tested. Based on these, its dynamic continuous cooling transformation (CCT) diagrams were determined. The results show that the transformation temperature from deformed austenite to acicular ferrite (AF) is decreased when Mo is added, and the formation of pro- eutectoid ferrite (F) and pearlite (P) is either inhabited or postponed. Mo can also enlarge the range of the cooling rate in forming AF, and refine the microstructure effectively.展开更多
Microstructures and properties of three Nb micro-alloyed steels were studied through hot rolling experiment. The result indicates that the ferrite grain size (dF ) decreases with increasing Nb content (Nb), and th...Microstructures and properties of three Nb micro-alloyed steels were studied through hot rolling experiment. The result indicates that the ferrite grain size (dF ) decreases with increasing Nb content (Nb), and the bainite fraction (fB) increases with increasing Nb content (Nb). The effect of ferrite grain size (dF) on yield strength (δy) is related to Nb content (Nb), and the effect of bainite fraction (fB) on yield strength (δy) is unrelated to Nb content (Nb). Modelling of yield strength (δy) for Nb micro-alloyed steels with high accuracy has been built up with Nb content (Nb) and bainite fraction (fB) taken into account as new parameters, and formulas for ferrite grain size (dF ) and bainite fraction (fB) vs Nb content (Nb) have also been established under the experiment conditions. The research results could provide instructions for industrial productions.展开更多
The hot ductility of the V-containing micro-alloying steel CC (continuouscasting) slabs and precipitation of vanadium carbide in the tensile specimens were investigated. Theresults indicate that the precipitation rati...The hot ductility of the V-containing micro-alloying steel CC (continuouscasting) slabs and precipitation of vanadium carbide in the tensile specimens were investigated. Theresults indicate that the precipitation ratio and precipitation rate of vanadium in the specimensreach maximum respectively at 900, -825 and 825 deg C. There is still l0 percent-l7 percent ofvanadium precipitated when the deformation temperature decreases to 800-700 deg C. Vanadium largelyaffects the ductility of the steel in the low ductility temperature Region III. Embrittlement ofsteel with higher V content is severer in the region and the embrittlement extends to lowertemperature.展开更多
This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel co...This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel consisted of lath martensite,M_(23)C_(6)carbides,and retained austenite.The retained austenite and carbides are responsible for the increase in elongation of the micro-alloyed steel.In addition,after oxidation at 930℃for 5 min,the thickness of the oxide scales on the Cr-Si micro-alloyed press hardened steel is less than 5μm,much thinner than 45.50μm-thick oxide scales on 22MnB5.The oxide scales of the Cr-Si micro-alloyed steel are composed of Fe_(2)O_(3),Fe_(3)O_(4),mixed spinel oxide(FeCr_(2)O_(4)and Fe_(2)SiO_(4)),and amorphous SiO_(2).Adding Cr and Si significantly reduces the thickness of the oxide scales and prevents the generation of the FeO phase.Due to the increase of spinel FeCr_(2)O_(4)and Fe_(2)SiO_(4)phase in the inner oxide scale and the amorphous SiO_(2)close to the substrate,the oxidation resistance of the Cr-Si micro-alloyed press hardened steel is improved.展开更多
The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism...The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.展开更多
Tensile mechanical properties of 1.6Si-1.58Mn-0.195C TRIP (transformation-induced plasticity) steels under high strain rate and effects of DP (dual-phase) treatments were studied and compared to the quasi-static tensi...Tensile mechanical properties of 1.6Si-1.58Mn-0.195C TRIP (transformation-induced plasticity) steels under high strain rate and effects of DP (dual-phase) treatments were studied and compared to the quasi-static tensile behavior. The results show that the increasing of strain rate leads to increasing in their strengths and decreasing in the uniform elongation remarkably. Because the stable retained austenite in TRIP steel can transform to martensite during tensile testing and the material exhibits excellent characteristic of transformation induced plasticity, the plastic deformation behavior is evidently improved and the combination of strength and elongation is superior to that of dual-phase steel, although its strength is smaller than that of DP steel. However, DP treated steel shown lower elongation under dynamic tension in spite of higher strength. A model was proposed to explain the excellent elongation rate of TRIP steel compared with DP steel on the basis of SEM analysis and the strength of the components in microstructure.展开更多
Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temp...Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temperature start-up,high energy density,and low noise.As one of the core components,the bipolar plates(BPs)play an important role in the PEMFC stack.Traditional graphite BPs and composite BPs have been criticized for their shortcomings such as low strength,high brittleness,and high processing cost.In contrast,stainless steel BPs(SSBPs)have recently attracted much attention of domestic and foreign researchers because of their excellent comprehensive performance,low cost,and diverse options for automobile applications.However,the SSBPs are prone to corrosion and passivation in the PEMFC working environment,which lead to reduced output power or premature failure.This review is aimed to summarize the corrosion and passivation mechanisms,characterizations and evaluation,and the surface modification technologies in the current SSBPs research.The non-coating and coating technical routes of SSBPs are demonstrated,such as substrate component regulation,thermal nitriding,electroplating,ion plating,chemical vapor deposition,and physical vapor deposition,etc.Alternative coating materials for SSBPs are metal coatings,metal nitride coatings,conductive polymer coatings,and polymer/carbon coatings,etc.Both the surface modification technologies can solve the corrosion resistance problem of stainless steel without affecting the contact resistance,however still facing restraints such as long-time stability,feasibility of low-cost,and mass production process.This paper is believed to enrich the knowledge of high-performance and long-life BPs applied for PEMFC automobiles.展开更多
The morphology and distribution of VC precipitates in HSLA steel as well as the orientation relationship between VC precipitate and α-Fe were studied by transmission electron microscopy (TEM). The chemical composit...The morphology and distribution of VC precipitates in HSLA steel as well as the orientation relationship between VC precipitate and α-Fe were studied by transmission electron microscopy (TEM). The chemical composition of the VC precipitate was analyzed qualitatively by using analytical electron microscopy (AEM) equipped with an energy dispersive spectrum (EDS) system. The VC precipitate is needle-like in shape with a size of about 10 nm in length and is homogeneously dispersed in the α-Fe matrix. The smaller lattice misfit along the 〈100〉 lattice direction of α-Fe matrix leads to VC precipitate forming with its long axes nearly parallel to the 〈100〉 lattice direction of α-Fe matrix. It is confirmed that the orientation relationship between VC precipitate and α- Fe is the "N-W" orientation relation by selected area electron diffraction (SAED) patterns.展开更多
Direct hot rolled dual phase steel production represents a challenging route, compared with cold rolled and intercritical annealing process, due to complex and sophisticated control of the hot strip mill processing pa...Direct hot rolled dual phase steel production represents a challenging route, compared with cold rolled and intercritical annealing process, due to complex and sophisticated control of the hot strip mill processing parameters. Instead, high technology compact slab production plant offers economic advantages, adequate control and prompt use of the advanced thermomechanical controlled rolling. The current work aims to obtain different structures and tensile properties by physical simulation of direct hot rolled niobium micro alloyed dual phase low carbon steel by varying the metallurgical temperatures of hot strip mill plant. This starts with adaptation of the chemical analysis of a low carbon content to fall far from the undesired peritectic region to avoid slab cracking during casting. Thermodynamic and kinetics calculations by Thermo-Calc 2020 and JMat pro software are used to define the transformation’s temperatures Ae1 and Ae3 as well as processing temperatures;namely of reheating, finishing rolling, step cooling and coiling temperatures. The results show that the increase of finishing rolling temperature from 780<span style="white-space:nowrap;">°</span>C to 840<span style="white-space:nowrap;">°</span>C or decreasing either of step cooling duration at ferrite bay from 7 to 4 seconds, enhances yield and tensile strengths, all due to more martensite volume fraction formation. The yield and tensile strengths also increase with decreasing coiling temperature from 330<span style="white-space:nowrap;">°</span>C to 180<span style="white-space:nowrap;">°</span>C, which is explained due to the increase of dislocation densities resulted from the sudden shape change during martensite formation at the lower coiling temperature in additional to the self-tempering of martensite formed at higher coiling temperatures which soften the dual phase steel.展开更多
To analyze the production and marketing of China automobile in Year 2009,and also the development of China automobile and steel cord in those 11 years.The single-element regression mathematics model was set up to anal...To analyze the production and marketing of China automobile in Year 2009,and also the development of China automobile and steel cord in those 11 years.The single-element regression mathematics model was set up to analyze the steel cord demand and automobile production.It predicted that automobile production would up to 15 170 000,16 690 000 and 18 360 000 respectively from 2010 to 2012,with the confidence as of 95%,the steel cord consumption in those three years will be 1 180 000 - 1 370 000 t, 1 320 000 - 1 520 000 t and 1 470 000 - 1 680 000 t.As to the policy of China stimulation,The role of Chinese tire has converted from the export-oriented to domestic consumer smoothly,so the effect of US special protectionist tariffs is limited in China.展开更多
Thermomechanical processing is a metallurgical operation to produce high-strength steel bars (rebars), through combining plastic deformation with thermal processes like heat treatment, water quenching, heating, and co...Thermomechanical processing is a metallurgical operation to produce high-strength steel bars (rebars), through combining plastic deformation with thermal processes like heat treatment, water quenching, heating, and cooling at various rates into a single process. Ribbed reinforcing steel bars (rebars) are used for the reinforcement of concrete structures. Tempcore is a unique process to produce high-yield-strength rebars from mild steel without addition of a high weight percentage of costly alloying elements. The strength of rebar originates from the formation of a surface layer consisting of quenched and tempered martensite that surrounds a core composed of ferrite and pearlite. The economic advantages of this process are significant in comparison to those processes requiring alloying elements or further metal working to improve the mechanical properties. However, when there is a limitation in the water-cooling capacity, the required volume fraction of the martensite layer can’t be accomplished particularly when rolling bigger diameters of 32 mm - 40 mm at a higher rolling speed to maintain high productivity. Accordingly, a small addition of microalloying elements vanadium or niobium could be used in combination with Tempcore process to obtain high-strength steel rebars. In this contribution, 0.06 weight percentage of vanadium is added to the Tempcore treated rebars to satisfy ASTM A 706 Standard of Rebar Grade 80 PSI [550 MPa]. In order to decrease the trials in the steel plant floor, thermodynamics equilibrium calculations are predicted by Thermo-Calc, CCT, TTT diagrams are calculated by JMat Pro and the kinetics evolution of the vanadium carbonitrides precipitates are predicted by the computational database Mat Calc. High yield strength and tensile strength are obtained due to the effect of fine dispersions of nanometer-scale vanadium carbonitrides precipitates inspected by transmission electron microscope.展开更多
The dynamic continuous cooling transformation(CCT)diagram and phase transformation rules of 510 MPa automobile beam steel,which is produced by a continuous casting of thin slab of FTSR technology in Tangshan Iron an...The dynamic continuous cooling transformation(CCT)diagram and phase transformation rules of 510 MPa automobile beam steel,which is produced by a continuous casting of thin slab of FTSR technology in Tangshan Iron and Steel Co.Ltd.,are researched by thermal simulation experiment.The microstructure characteristics of the beam steel under different test conditions are studied by means of optical microscope and scanning electron microscope.The test results show that the critical temperatures of phase transformation Ar3 and Ar1 will all decrease with the increase of the cooling rate.When the cooling rate is lower than 20 ℃·s-1,the ferrite and pearlite phase transformations are the main parts;when the cooling rate is higher than 20 ℃·s-1,the bainite phase appears.Moreover,the microstructures of 510 MPa automobile beam steel produced by FTSR technology are also studied,and the results are basically in accordance with the CCT diagram gained from the test.展开更多
文摘As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.
文摘The fundamental research and industry, trials of the third generation automobile steel QP980 were introduced in this paper, including chemical ingredient, mechanical properties, microstructure, forming limit and basic perform- ance parameters. The application of QP steel of the B-pillar was researched, and the QP980, DP600 and hot forming steel were compared in the aspect of formability, safety and cost. The resuhs showed that the QP980 replacing DP600 steel single piece carl reduce the weight by 2.4 kg. The security and performance is basically the same as that of hot forming steel using 22MnB5, and the cost is reduced by 30 %.
文摘The variety,inner quality and surface quality of low-alloy spring steel wire rod for domestic automobile is summarized in detail.And according to commercial low-alloy spring steel wire rod variety, product quality level and its actual application situation on automobile supplied by present industrially developed country metallurgy enterprises,it is pointed that the variety of low-alloy spring steel wire rod for domestic automobile can't satisfy the requirements of automobile industry development,compare with overseas advanced technology,product quality has the following gaps:the first is that steel purity is low,the control level of non-metallic inclusions is not steady,there is often large grain difficult deforming non-deformation inclusions existing,the control level of steel purity has big difference,the level of large steel factory is high,but its steady has a large gap compare with foreign advanced level,not to mention small steel factory which research and development powder is low.The second is surface complete decarburization can' t be avoided completely.The third is that surface defects are more.The fourth is that composition segregation and structure segregation are not steady,steel wire can't be drawn normally when the segregation is serious. In all,the segregation of 55SiCrA is superior to 60Si2MnA obviously.The industrialization of domestic high level low-alloy spring steel wire rod can't seek quick success and instant benefits,independent innovation perseveringly must be adopted,the success may be reached after master core technologies and adopt the science way of step by step.
文摘The inorganic-lubricant-coated galvannealed automobile steel sheet is a new product that improves the press formability of automobile body panels.In this paper,the production process,physical and chemical properties,press formability,and corrosion resistance of this new automobile steel sheet were discussed.Test results show that this inorganic solid-lubricant galvannealed automobile steel sheet has good surface friction characteristics and press formability.This product also meets the automobile industry’s requirements for press formability,phosphate pro-perties,and corrosion resistance after coating.
基金supported by the National Natural Science Foundation of China(No.51504172)and(No.51474163)China Postdoctoral Science Foundation(No.2015M572212)
文摘Austenite grain size is an important influence factor for ductility of steel at high temperatures during continuous casting. Thermodynamic and kinetics calculations were performed to analyze the characteristics of Ti(C,N) precipitates formed during the continuous casting of micro-alloyed steel. Based on Andersen-Grong equation, a coupling model of second phase precipitation and austenite grain growth has been established, and the influence of second precipitates on austenite grain growth under different cooling rates is discussed. Calculations show that the final sizes of austenite grains are 2.155, 1.244, 0.965, 0.847 and 0.686 mm, respectively, under the cooling rate of 1, 3, 5, 7, and 10 ℃·s^(-1), when ignoring the pinning effect of precipitation on austenite growth. Whereas, if taking the pinning effect into consideration, the grain growth remains stable from 1,350 ℃, the calculated final sizes of austenite grains are 1.46, 1.02, 0.80, 0.67 and 0.57 mm, respectively. The sizes of final Ti(C,N) precipitates are 137, 79, 61, 51 and 43 nm, respectively, with the increase of cooling rate from 1 to 10 ℃·s^(-1). Model validation shows that the austenite size under different cooling rates coincided with the calculation results. Finally, the corresponding measures to strengthen cooling intensity at elevated temperature are proposed to improve the ductility and transverse crack of slab.
文摘Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperatures on microstructuralstate of austenite were discussed. Corresponding to parameter Z in the dynamic recrystallization diagram, parameterY was then introduced to simplify static recrystallization diagrams.
文摘The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phase transformation temperature of the steel at various cooling rates was detected. The microstmcture was observed by optical microscope (OM) and scanning electronic microscope ( SEM), and its Vickers hardness was tested. Based on these, its dynamic continuous cooling transformation (CCT) diagrams were determined. The results show that the transformation temperature from deformed austenite to acicular ferrite (AF) is decreased when Mo is added, and the formation of pro- eutectoid ferrite (F) and pearlite (P) is either inhabited or postponed. Mo can also enlarge the range of the cooling rate in forming AF, and refine the microstructure effectively.
文摘Microstructures and properties of three Nb micro-alloyed steels were studied through hot rolling experiment. The result indicates that the ferrite grain size (dF ) decreases with increasing Nb content (Nb), and the bainite fraction (fB) increases with increasing Nb content (Nb). The effect of ferrite grain size (dF) on yield strength (δy) is related to Nb content (Nb), and the effect of bainite fraction (fB) on yield strength (δy) is unrelated to Nb content (Nb). Modelling of yield strength (δy) for Nb micro-alloyed steels with high accuracy has been built up with Nb content (Nb) and bainite fraction (fB) taken into account as new parameters, and formulas for ferrite grain size (dF ) and bainite fraction (fB) vs Nb content (Nb) have also been established under the experiment conditions. The research results could provide instructions for industrial productions.
文摘The hot ductility of the V-containing micro-alloying steel CC (continuouscasting) slabs and precipitation of vanadium carbide in the tensile specimens were investigated. Theresults indicate that the precipitation ratio and precipitation rate of vanadium in the specimensreach maximum respectively at 900, -825 and 825 deg C. There is still l0 percent-l7 percent ofvanadium precipitated when the deformation temperature decreases to 800-700 deg C. Vanadium largelyaffects the ductility of the steel in the low ductility temperature Region III. Embrittlement ofsteel with higher V content is severer in the region and the embrittlement extends to lowertemperature.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.52274372 and 52201101)the National Key R&D Program of China(No.2021YFB3702404)the Fundamental Research Funds for the Central Universities(No.FRF-TP-22-013A1).
文摘This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel consisted of lath martensite,M_(23)C_(6)carbides,and retained austenite.The retained austenite and carbides are responsible for the increase in elongation of the micro-alloyed steel.In addition,after oxidation at 930℃for 5 min,the thickness of the oxide scales on the Cr-Si micro-alloyed press hardened steel is less than 5μm,much thinner than 45.50μm-thick oxide scales on 22MnB5.The oxide scales of the Cr-Si micro-alloyed steel are composed of Fe_(2)O_(3),Fe_(3)O_(4),mixed spinel oxide(FeCr_(2)O_(4)and Fe_(2)SiO_(4)),and amorphous SiO_(2).Adding Cr and Si significantly reduces the thickness of the oxide scales and prevents the generation of the FeO phase.Due to the increase of spinel FeCr_(2)O_(4)and Fe_(2)SiO_(4)phase in the inner oxide scale and the amorphous SiO_(2)close to the substrate,the oxidation resistance of the Cr-Si micro-alloyed press hardened steel is improved.
基金Item Sponsored by National Natural Science Foundation of China Baoshan Iron and Steel Co Ltd(50534010)
文摘The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.
基金the financial supports of Shanghai Development Foun-dation of Auto Industry and the National Natural Science Foundation of China (No. 50171038).
文摘Tensile mechanical properties of 1.6Si-1.58Mn-0.195C TRIP (transformation-induced plasticity) steels under high strain rate and effects of DP (dual-phase) treatments were studied and compared to the quasi-static tensile behavior. The results show that the increasing of strain rate leads to increasing in their strengths and decreasing in the uniform elongation remarkably. Because the stable retained austenite in TRIP steel can transform to martensite during tensile testing and the material exhibits excellent characteristic of transformation induced plasticity, the plastic deformation behavior is evidently improved and the combination of strength and elongation is superior to that of dual-phase steel, although its strength is smaller than that of DP steel. However, DP treated steel shown lower elongation under dynamic tension in spite of higher strength. A model was proposed to explain the excellent elongation rate of TRIP steel compared with DP steel on the basis of SEM analysis and the strength of the components in microstructure.
基金supported by the National Natural Science Foundation of China(No.51704017)the National Key Research and Development plan of China(No.2018YFB1502403)the Communication Program for Young Scientist in USTB(No.QNXM20210010)。
文摘Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temperature start-up,high energy density,and low noise.As one of the core components,the bipolar plates(BPs)play an important role in the PEMFC stack.Traditional graphite BPs and composite BPs have been criticized for their shortcomings such as low strength,high brittleness,and high processing cost.In contrast,stainless steel BPs(SSBPs)have recently attracted much attention of domestic and foreign researchers because of their excellent comprehensive performance,low cost,and diverse options for automobile applications.However,the SSBPs are prone to corrosion and passivation in the PEMFC working environment,which lead to reduced output power or premature failure.This review is aimed to summarize the corrosion and passivation mechanisms,characterizations and evaluation,and the surface modification technologies in the current SSBPs research.The non-coating and coating technical routes of SSBPs are demonstrated,such as substrate component regulation,thermal nitriding,electroplating,ion plating,chemical vapor deposition,and physical vapor deposition,etc.Alternative coating materials for SSBPs are metal coatings,metal nitride coatings,conductive polymer coatings,and polymer/carbon coatings,etc.Both the surface modification technologies can solve the corrosion resistance problem of stainless steel without affecting the contact resistance,however still facing restraints such as long-time stability,feasibility of low-cost,and mass production process.This paper is believed to enrich the knowledge of high-performance and long-life BPs applied for PEMFC automobiles.
基金This work was financially supported by the National Natural Science Foundation of China (No.59971008).
文摘The morphology and distribution of VC precipitates in HSLA steel as well as the orientation relationship between VC precipitate and α-Fe were studied by transmission electron microscopy (TEM). The chemical composition of the VC precipitate was analyzed qualitatively by using analytical electron microscopy (AEM) equipped with an energy dispersive spectrum (EDS) system. The VC precipitate is needle-like in shape with a size of about 10 nm in length and is homogeneously dispersed in the α-Fe matrix. The smaller lattice misfit along the 〈100〉 lattice direction of α-Fe matrix leads to VC precipitate forming with its long axes nearly parallel to the 〈100〉 lattice direction of α-Fe matrix. It is confirmed that the orientation relationship between VC precipitate and α- Fe is the "N-W" orientation relation by selected area electron diffraction (SAED) patterns.
文摘Direct hot rolled dual phase steel production represents a challenging route, compared with cold rolled and intercritical annealing process, due to complex and sophisticated control of the hot strip mill processing parameters. Instead, high technology compact slab production plant offers economic advantages, adequate control and prompt use of the advanced thermomechanical controlled rolling. The current work aims to obtain different structures and tensile properties by physical simulation of direct hot rolled niobium micro alloyed dual phase low carbon steel by varying the metallurgical temperatures of hot strip mill plant. This starts with adaptation of the chemical analysis of a low carbon content to fall far from the undesired peritectic region to avoid slab cracking during casting. Thermodynamic and kinetics calculations by Thermo-Calc 2020 and JMat pro software are used to define the transformation’s temperatures Ae1 and Ae3 as well as processing temperatures;namely of reheating, finishing rolling, step cooling and coiling temperatures. The results show that the increase of finishing rolling temperature from 780<span style="white-space:nowrap;">°</span>C to 840<span style="white-space:nowrap;">°</span>C or decreasing either of step cooling duration at ferrite bay from 7 to 4 seconds, enhances yield and tensile strengths, all due to more martensite volume fraction formation. The yield and tensile strengths also increase with decreasing coiling temperature from 330<span style="white-space:nowrap;">°</span>C to 180<span style="white-space:nowrap;">°</span>C, which is explained due to the increase of dislocation densities resulted from the sudden shape change during martensite formation at the lower coiling temperature in additional to the self-tempering of martensite formed at higher coiling temperatures which soften the dual phase steel.
文摘To analyze the production and marketing of China automobile in Year 2009,and also the development of China automobile and steel cord in those 11 years.The single-element regression mathematics model was set up to analyze the steel cord demand and automobile production.It predicted that automobile production would up to 15 170 000,16 690 000 and 18 360 000 respectively from 2010 to 2012,with the confidence as of 95%,the steel cord consumption in those three years will be 1 180 000 - 1 370 000 t, 1 320 000 - 1 520 000 t and 1 470 000 - 1 680 000 t.As to the policy of China stimulation,The role of Chinese tire has converted from the export-oriented to domestic consumer smoothly,so the effect of US special protectionist tariffs is limited in China.
文摘Thermomechanical processing is a metallurgical operation to produce high-strength steel bars (rebars), through combining plastic deformation with thermal processes like heat treatment, water quenching, heating, and cooling at various rates into a single process. Ribbed reinforcing steel bars (rebars) are used for the reinforcement of concrete structures. Tempcore is a unique process to produce high-yield-strength rebars from mild steel without addition of a high weight percentage of costly alloying elements. The strength of rebar originates from the formation of a surface layer consisting of quenched and tempered martensite that surrounds a core composed of ferrite and pearlite. The economic advantages of this process are significant in comparison to those processes requiring alloying elements or further metal working to improve the mechanical properties. However, when there is a limitation in the water-cooling capacity, the required volume fraction of the martensite layer can’t be accomplished particularly when rolling bigger diameters of 32 mm - 40 mm at a higher rolling speed to maintain high productivity. Accordingly, a small addition of microalloying elements vanadium or niobium could be used in combination with Tempcore process to obtain high-strength steel rebars. In this contribution, 0.06 weight percentage of vanadium is added to the Tempcore treated rebars to satisfy ASTM A 706 Standard of Rebar Grade 80 PSI [550 MPa]. In order to decrease the trials in the steel plant floor, thermodynamics equilibrium calculations are predicted by Thermo-Calc, CCT, TTT diagrams are calculated by JMat Pro and the kinetics evolution of the vanadium carbonitrides precipitates are predicted by the computational database Mat Calc. High yield strength and tensile strength are obtained due to the effect of fine dispersions of nanometer-scale vanadium carbonitrides precipitates inspected by transmission electron microscope.
基金Item Sponsored by National Natural Science Foundation of China(50334010)FOK YING TUNG Education Foundation(104017)
文摘The dynamic continuous cooling transformation(CCT)diagram and phase transformation rules of 510 MPa automobile beam steel,which is produced by a continuous casting of thin slab of FTSR technology in Tangshan Iron and Steel Co.Ltd.,are researched by thermal simulation experiment.The microstructure characteristics of the beam steel under different test conditions are studied by means of optical microscope and scanning electron microscope.The test results show that the critical temperatures of phase transformation Ar3 and Ar1 will all decrease with the increase of the cooling rate.When the cooling rate is lower than 20 ℃·s-1,the ferrite and pearlite phase transformations are the main parts;when the cooling rate is higher than 20 ℃·s-1,the bainite phase appears.Moreover,the microstructures of 510 MPa automobile beam steel produced by FTSR technology are also studied,and the results are basically in accordance with the CCT diagram gained from the test.