Analytical nonparaxial vectorial electric field expressions for both Gaussian beams and plane waves diffracted through a circular aperture are derived by using the vector plane angular spectrum method for the first ti...Analytical nonparaxial vectorial electric field expressions for both Gaussian beams and plane waves diffracted through a circular aperture are derived by using the vector plane angular spectrum method for the first time, which is suitable for the subwavelength aperture and the near-field region. The transverse properties of intensity distributions and their evolutions with the propagating distance, and the power transmission functions for diffracted fields containing the whole field, the evanescent field and the propagating field are investigated in detail, which is helpful for understanding the relationship between evanescent and propagating components in the near-field region and can be applied to apertured near-field scanning optical microscopy.展开更多
Observation and analysis of ocean wave diffraction in near-shore and near-island region was performed with Synthetic Aperture Radar (SAR) data, using an optimized retrieval method named parameterized first-guess spe...Observation and analysis of ocean wave diffraction in near-shore and near-island region was performed with Synthetic Aperture Radar (SAR) data, using an optimized retrieval method named parameterized first-guess spectrum retrieval method. The results retrieved from ERS-SAR and ENVISAT-ASAR images showed that, in the region sheltered by land jut, the energy of long waves is reduced by 10%-20% and that the propagation direction of long waves is changed due to the effect of topography. In the shadow zone behind the island, ocean wave can propagate along the seashore instead of perpendicular to the coastline, as shown by SAR images.展开更多
We have derived the analytical expression of the electric cross-spectral density in the near- field of partially coherent vortex beams diffracted by an aperture. Taking the Caussian Schell-model vortex beam as a typic...We have derived the analytical expression of the electric cross-spectral density in the near- field of partially coherent vortex beams diffracted by an aperture. Taking the Caussian Schell-model vortex beam as a typical example of partially coherent vortex beams, the spatial correlation properties and correlation vortices in the near-field of partially coherent vortex beams diffracted by a rectangle aperture are studied. It is shown that the off-axis displacement, spatial degree of coherence parameter, propagation distance, and the opening factor of the aperture affect the spectral degree of coherence and positions of correlation vortices. With the optimization algorithm, we obtain the symmetric distributing coherent vortex.展开更多
Diffractive lenses(DLs)can realize high-resolution imaging with light weight and compact size.Conventional DLs suffer large chromatic and off-axis aberrations,which significantly limits their practical applications.Al...Diffractive lenses(DLs)can realize high-resolution imaging with light weight and compact size.Conventional DLs suffer large chromatic and off-axis aberrations,which significantly limits their practical applications.Although many achromatic methods have been proposed,most of them are used for designing small aperture DLs,which have low diffraction efficiencies.In the designing of diffractive achromatic lenses,increasing the aperture and improving the diffraction efficiency have become two of the most important design issues.Here,a novel phase-coded diffractive lens(PCDL)for achromatic imaging with a large aperture and high efficiency is proposed and demonstrated experimentally,and it also possesses wide field-of-view(FOV)imaging at the same time.The phase distribution of the conventional phase-type diffractive lens(DL)is coded with a cubic function to expand both the working bandwidth and the FOV of conventional DL.The proposed phase-type DL is fabricated by using the laser direct writing of grey-scale patterns for a PCDL of a diameter of 10 mm,a focal length of 100 mm,and a cubic phase coding parameter of 30π.Experimental results show that the working bandwidth and the FOV of the PCDL respectively reach 50 nm and 16°with over 8%focusing efficiency,which are in significant contrast to the counterparts of conventional DL and in good agreement with the theoretical predictions.This work provides a novel way for implementing the achromatic,wide FOV,and high-efficiency imaging with large aperture DL.展开更多
The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT ...The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT is proposed to improve the time resolution and lateral resolution in TOFD imaging by combining sparse deconvolution and synthetic aperture focusing technique(SAFT).The mathematical model in the frequency domain is established based on the l1 and l2 norm constraints,and the optimization problem is solved for enhancing time resolution.On this basis,SAFT is employed to improve lateral resolution by delay-and-sum beamforming.The simulated and experimental results indicate that the lateral wave and tip-diffracted waves can be decoupled with Sparse-SAFT.The shallow subsurface defects with a height of 3.0 mm at the depth of 3.0 mm were detected quantitatively,and the relative measurement errors of flaw heights and depths were no more than 10.3%.Compared to conventional SAFT,the time resolution and lateral resolution are enhanced by 72.5 and 56%with Sparse-SAFT,respectively.Finally,the proposed method is also suitable for improving resolution to detect the defects beyond dead zone.展开更多
Propagation characteristics of finite Airy-Gaussian beams through an apertured misaligned first-order ABCD optical system are studied. In this work, the generalized Huygens-Fresnel diffraction integral and the expansi...Propagation characteristics of finite Airy-Gaussian beams through an apertured misaligned first-order ABCD optical system are studied. In this work, the generalized Huygens-Fresnel diffraction integral and the expansion of the hard aperture function into a finite sum of complex Gaussian functions are used. The propagation of Airy-Gaussian beam passing through: an unapertured misaligned optical system, an apertured aligned ABCD optical system and an unapertured aligned ABCD optical system are derived here as particular cases of the main finding. Some numerical simulations are performed in the paper.展开更多
Based on the Collins diffraction formula and by means of the expansion of a hard aperture function into a finite sum of complex Gaussian functions, two analytical approaches of the Finite Olver beams (FOBs) passing th...Based on the Collins diffraction formula and by means of the expansion of a hard aperture function into a finite sum of complex Gaussian functions, two analytical approaches of the Finite Olver beams (FOBs) passing through a paraxial ABCD optical system with a circular annular aperture or a rectangular one are developed in this paper. The propagation properties of the FOBs through an unapertured ABCD optical system or through this last with a circular (or rectangular) aperture or a circular (or rectangular) black screen are deduced, from the main results, as particular cases. Also, the characteristics of Finite ordinary Airy beam passing through the all considered optical systems are derived here that correspond to zeroth-order of the FOBs. According to the predicted formulas, computer simulation examples are given to deepen the understanding of the characteristics of the FOBs passing through some optical systems of annular aperture basis.展开更多
So far, the diffracted SAW field generated by an IDT with finite aperture on piezoelectric crystal surfaces is usually analyzed phenomenologically with the angular spectrum theory. A major approximation of this theory...So far, the diffracted SAW field generated by an IDT with finite aperture on piezoelectric crystal surfaces is usually analyzed phenomenologically with the angular spectrum theory. A major approximation of this theory is to ignore the vector nature of the field by assuming that the wave field can be represented by a scalar as in optics. In this paper, a rigorous vector field theory of the surface excitation of elastic wave field in piezoelectric crystal developed by the authors is used to evaluate the SAW diffraction field adepately and precisely. As an example, numerical results for YZ-LiNbO3 are presented and compared with those obtained form the angular spectrum theory.展开更多
Geometrical optics and the Monte Carlo method are very flexible in dealing with the interaction of light with non-spherical particles, but usually diffraction is not considered. To cover this gap, the Heisenberg Uncer...Geometrical optics and the Monte Carlo method are very flexible in dealing with the interaction of light with non-spherical particles, but usually diffraction is not considered. To cover this gap, the Heisenberg Uncertainty Monte Carlo (HUMC) model is applied to calculate separately the diffraction of a ray or a photon. In this paper, we report an improvement of the HUMC model by specifying the phase of the photon subject to the Fraunhofer diffraction condition. After validating the model by comparing its results with analytical results for apertures of simple shapes, the HUMC model is then applied in simulations of Fraunhofer diffraction by apertures of complex shapes, such as those composed of one or two elliptical openings. We have shown that the diffracted intensity distributions of simple apertures obtained by the HUMC model are in good agreement with the results calculated from analytical expressions. The simulations of diffraction by apertures composed of two square or elliptical openings prove that the HUMC model is a powerful and flexible too] for predicting the Fraunhofer diffraction by a complex optical system.展开更多
In this letter, we propose a method for the numerical calculations of the femtosecond laser pulse passed through a subwavelength aperture. The time-dependent laser pulse is decomposed into a series of monochromatic si...In this letter, we propose a method for the numerical calculations of the femtosecond laser pulse passed through a subwavelength aperture. The time-dependent laser pulse is decomposed into a series of monochromatic simple harmonic waves. For the light field of the harmonic wave with a single frequency, the numerical calculation is made based on the solution of the Green's integral equation set of the electromagnetic waves. Such numerical solution is iterated for all the waves with different frequencies, and all the numerical solutions are transformed into the light fields in the time domain by inverse Fourier transform. The light intensity distributions transmitted the subwavelength aperture are calculated and the results show the propagation of the light field is along the direction of the medium interface.展开更多
多视角多频带逆合成孔径雷达(inverse synthetic aperture radar,ISAR)融合成像技术克服了单雷达成像分辨率受发射带宽和观测视角的限制,是提高ISAR成像的二维分辨率的新手段。在宽带小角度观测条件下,针对目标散射系数随频率变化的情况...多视角多频带逆合成孔径雷达(inverse synthetic aperture radar,ISAR)融合成像技术克服了单雷达成像分辨率受发射带宽和观测视角的限制,是提高ISAR成像的二维分辨率的新手段。在宽带小角度观测条件下,针对目标散射系数随频率变化的情况,提出一种基于几何绕射理论(geometrical theory of diffraction,GTD)模型的多视角多频带ISAR融合成像方法。首先,以GTD模型为基础建立ISAR成像回波模型;然后,将多视角多频带ISAR融合成像问题转化为信号稀疏重构问题,并采用正交匹配追踪算法求解,在保证融合成像质量的同时提高了的成像效率;最后,利用仿真实验验证了所提方法的有效性。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 50975128)the National Key Basic Research Program of China (Grant No. 2011CB013004)+2 种基金the Natural Science Foundation of Jiangsu Province,China (Grant No. BK2011462)the National Science Foundation for Postdoctoral Scientists of China (Grant No. 20100481093)Jiangsu Provincial Planned Projects for Postdoctoral Research Funds,China (Grant No. 0902028C)
文摘Analytical nonparaxial vectorial electric field expressions for both Gaussian beams and plane waves diffracted through a circular aperture are derived by using the vector plane angular spectrum method for the first time, which is suitable for the subwavelength aperture and the near-field region. The transverse properties of intensity distributions and their evolutions with the propagating distance, and the power transmission functions for diffracted fields containing the whole field, the evanescent field and the propagating field are investigated in detail, which is helpful for understanding the relationship between evanescent and propagating components in the near-field region and can be applied to apertured near-field scanning optical microscopy.
基金Supported by the High-Tech Research and Development Program of China (863 Program, Nos. 2001AA633070 and 2003AA604040)the National Basic Research Program of China (973 Program, No.2005CB422307)
文摘Observation and analysis of ocean wave diffraction in near-shore and near-island region was performed with Synthetic Aperture Radar (SAR) data, using an optimized retrieval method named parameterized first-guess spectrum retrieval method. The results retrieved from ERS-SAR and ENVISAT-ASAR images showed that, in the region sheltered by land jut, the energy of long waves is reduced by 10%-20% and that the propagation direction of long waves is changed due to the effect of topography. In the shadow zone behind the island, ocean wave can propagate along the seashore instead of perpendicular to the coastline, as shown by SAR images.
基金Project supported by the China Postdoctoral Science Foundation (Grant No. 2009450159)the Foundation of the State Key Laboratory of Optical Technologies for Micro-Frabrication & Micro-Engineering, Chinese Academy of Sciences (Grant No. KF001)
文摘We have derived the analytical expression of the electric cross-spectral density in the near- field of partially coherent vortex beams diffracted by an aperture. Taking the Caussian Schell-model vortex beam as a typical example of partially coherent vortex beams, the spatial correlation properties and correlation vortices in the near-field of partially coherent vortex beams diffracted by a rectangle aperture are studied. It is shown that the off-axis displacement, spatial degree of coherence parameter, propagation distance, and the opening factor of the aperture affect the spectral degree of coherence and positions of correlation vortices. With the optimization algorithm, we obtain the symmetric distributing coherent vortex.
基金the National Natural Science Foundation of China(Grant No.61775154)the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(Grant No.18KJB140015)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Open Research Fund of CAS Key Laboratory of Space Precision Measurement Technology,China(Grant No.SPMT2021001)。
文摘Diffractive lenses(DLs)can realize high-resolution imaging with light weight and compact size.Conventional DLs suffer large chromatic and off-axis aberrations,which significantly limits their practical applications.Although many achromatic methods have been proposed,most of them are used for designing small aperture DLs,which have low diffraction efficiencies.In the designing of diffractive achromatic lenses,increasing the aperture and improving the diffraction efficiency have become two of the most important design issues.Here,a novel phase-coded diffractive lens(PCDL)for achromatic imaging with a large aperture and high efficiency is proposed and demonstrated experimentally,and it also possesses wide field-of-view(FOV)imaging at the same time.The phase distribution of the conventional phase-type diffractive lens(DL)is coded with a cubic function to expand both the working bandwidth and the FOV of conventional DL.The proposed phase-type DL is fabricated by using the laser direct writing of grey-scale patterns for a PCDL of a diameter of 10 mm,a focal length of 100 mm,and a cubic phase coding parameter of 30π.Experimental results show that the working bandwidth and the FOV of the PCDL respectively reach 50 nm and 16°with over 8%focusing efficiency,which are in significant contrast to the counterparts of conventional DL and in good agreement with the theoretical predictions.This work provides a novel way for implementing the achromatic,wide FOV,and high-efficiency imaging with large aperture DL.
基金National Key Research and Development Program of China(Grant No.2019YFA0709003)National Natural Science Foundation of China(Grant No.51905079)Liaoning Revitalization Talents Program(Grant No.XLYC1902082).
文摘The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT is proposed to improve the time resolution and lateral resolution in TOFD imaging by combining sparse deconvolution and synthetic aperture focusing technique(SAFT).The mathematical model in the frequency domain is established based on the l1 and l2 norm constraints,and the optimization problem is solved for enhancing time resolution.On this basis,SAFT is employed to improve lateral resolution by delay-and-sum beamforming.The simulated and experimental results indicate that the lateral wave and tip-diffracted waves can be decoupled with Sparse-SAFT.The shallow subsurface defects with a height of 3.0 mm at the depth of 3.0 mm were detected quantitatively,and the relative measurement errors of flaw heights and depths were no more than 10.3%.Compared to conventional SAFT,the time resolution and lateral resolution are enhanced by 72.5 and 56%with Sparse-SAFT,respectively.Finally,the proposed method is also suitable for improving resolution to detect the defects beyond dead zone.
文摘Propagation characteristics of finite Airy-Gaussian beams through an apertured misaligned first-order ABCD optical system are studied. In this work, the generalized Huygens-Fresnel diffraction integral and the expansion of the hard aperture function into a finite sum of complex Gaussian functions are used. The propagation of Airy-Gaussian beam passing through: an unapertured misaligned optical system, an apertured aligned ABCD optical system and an unapertured aligned ABCD optical system are derived here as particular cases of the main finding. Some numerical simulations are performed in the paper.
文摘Based on the Collins diffraction formula and by means of the expansion of a hard aperture function into a finite sum of complex Gaussian functions, two analytical approaches of the Finite Olver beams (FOBs) passing through a paraxial ABCD optical system with a circular annular aperture or a rectangular one are developed in this paper. The propagation properties of the FOBs through an unapertured ABCD optical system or through this last with a circular (or rectangular) aperture or a circular (or rectangular) black screen are deduced, from the main results, as particular cases. Also, the characteristics of Finite ordinary Airy beam passing through the all considered optical systems are derived here that correspond to zeroth-order of the FOBs. According to the predicted formulas, computer simulation examples are given to deepen the understanding of the characteristics of the FOBs passing through some optical systems of annular aperture basis.
基金The project is supported by the National Natural Science Foundation of China
文摘So far, the diffracted SAW field generated by an IDT with finite aperture on piezoelectric crystal surfaces is usually analyzed phenomenologically with the angular spectrum theory. A major approximation of this theory is to ignore the vector nature of the field by assuming that the wave field can be represented by a scalar as in optics. In this paper, a rigorous vector field theory of the surface excitation of elastic wave field in piezoelectric crystal developed by the authors is used to evaluate the SAW diffraction field adepately and precisely. As an example, numerical results for YZ-LiNbO3 are presented and compared with those obtained form the angular spectrum theory.
文摘Geometrical optics and the Monte Carlo method are very flexible in dealing with the interaction of light with non-spherical particles, but usually diffraction is not considered. To cover this gap, the Heisenberg Uncertainty Monte Carlo (HUMC) model is applied to calculate separately the diffraction of a ray or a photon. In this paper, we report an improvement of the HUMC model by specifying the phase of the photon subject to the Fraunhofer diffraction condition. After validating the model by comparing its results with analytical results for apertures of simple shapes, the HUMC model is then applied in simulations of Fraunhofer diffraction by apertures of complex shapes, such as those composed of one or two elliptical openings. We have shown that the diffracted intensity distributions of simple apertures obtained by the HUMC model are in good agreement with the results calculated from analytical expressions. The simulations of diffraction by apertures composed of two square or elliptical openings prove that the HUMC model is a powerful and flexible too] for predicting the Fraunhofer diffraction by a complex optical system.
文摘In this letter, we propose a method for the numerical calculations of the femtosecond laser pulse passed through a subwavelength aperture. The time-dependent laser pulse is decomposed into a series of monochromatic simple harmonic waves. For the light field of the harmonic wave with a single frequency, the numerical calculation is made based on the solution of the Green's integral equation set of the electromagnetic waves. Such numerical solution is iterated for all the waves with different frequencies, and all the numerical solutions are transformed into the light fields in the time domain by inverse Fourier transform. The light intensity distributions transmitted the subwavelength aperture are calculated and the results show the propagation of the light field is along the direction of the medium interface.
文摘多视角多频带逆合成孔径雷达(inverse synthetic aperture radar,ISAR)融合成像技术克服了单雷达成像分辨率受发射带宽和观测视角的限制,是提高ISAR成像的二维分辨率的新手段。在宽带小角度观测条件下,针对目标散射系数随频率变化的情况,提出一种基于几何绕射理论(geometrical theory of diffraction,GTD)模型的多视角多频带ISAR融合成像方法。首先,以GTD模型为基础建立ISAR成像回波模型;然后,将多视角多频带ISAR融合成像问题转化为信号稀疏重构问题,并采用正交匹配追踪算法求解,在保证融合成像质量的同时提高了的成像效率;最后,利用仿真实验验证了所提方法的有效性。