In this paper, the method of relaxed boundary conditions is applied to rectangular plates with edges which are a sort of the mixture of simply supported portions and clamped portions, so that the lower limit of fundam...In this paper, the method of relaxed boundary conditions is applied to rectangular plates with edges which are a sort of the mixture of simply supported portions and clamped portions, so that the lower limit of fundamental frequency of such plates is evaluated. A kind of polynomial satisfying the displacement boundary conditions is designed, os that it is enabled to evaluate the upper limit of fundamental frequency by Ritz' method. The practical calculation examples solved by these methods have given satisfactory results. At the end of this paper, it is pointed out that the socalled exact solution of such plates usually evaluated by the force superposition method is essentially a kind of lower limit of solution, if the truncated error of series which occurs in actual calculation is considered.展开更多
Decarbonization of the electric power sector is essential for sustainable development.Low-carbon generation technologies,such as solar and wind energy,can replace the CO_(2)-emitting energy sources(coal and natural ga...Decarbonization of the electric power sector is essential for sustainable development.Low-carbon generation technologies,such as solar and wind energy,can replace the CO_(2)-emitting energy sources(coal and natural gas plants).As a sustainable engineering practice,long-duration energy storage technologies must be employed to manage imbalances in the variable renewable energy supply and electricity demand.Compressed air energy storage(CAES)is an effective solution for balancing this mismatch and therefore is suitable for use in future electrical systems to achieve a high penetration of renewable energy generation.This study introduces recent progress in CAES,mainly advanced CAES,which is a clean energy technology that eliminates the use of fossil fuels,compared with two commercial CAES plants at Huntorf and McIntosh which are conventional ones utilizing fossil fuels.Advanced CAES include adiabatic CAES,isothermal CAES,liquid air energy storage,supercritical CAES,underwater CAES,and CAES coupled with other technologies.The principles and configurations of these advanced CAES technologies are briefly discussed and a comprehensive review of the state-of-the-art technologies is presented,including theoretical studies,experiments,demonstrations,and applications.The comparison and discussion of these CAES technologies are summarized with a focus on technical maturity,power sizing,storage capacity,operation pressure,round-trip efficiency,efficiency of the components,operation duration,and investment cost.Potential application trends were compiled.This paper presents a comprehensive reference for developing novel CAES systems and makes recommendations for future research and development to facilitate their application in several areas,ranging from fundamentals to applications.展开更多
文摘In this paper, the method of relaxed boundary conditions is applied to rectangular plates with edges which are a sort of the mixture of simply supported portions and clamped portions, so that the lower limit of fundamental frequency of such plates is evaluated. A kind of polynomial satisfying the displacement boundary conditions is designed, os that it is enabled to evaluate the upper limit of fundamental frequency by Ritz' method. The practical calculation examples solved by these methods have given satisfactory results. At the end of this paper, it is pointed out that the socalled exact solution of such plates usually evaluated by the force superposition method is essentially a kind of lower limit of solution, if the truncated error of series which occurs in actual calculation is considered.
基金the Beijing Natural Science Foundation (JQ21010)the National Natural Science Foundation of China (52376040)+1 种基金the National Science Fund for Distinguished Young Scholars (51925604)the Beijing Nova Program (20230484479).
文摘Decarbonization of the electric power sector is essential for sustainable development.Low-carbon generation technologies,such as solar and wind energy,can replace the CO_(2)-emitting energy sources(coal and natural gas plants).As a sustainable engineering practice,long-duration energy storage technologies must be employed to manage imbalances in the variable renewable energy supply and electricity demand.Compressed air energy storage(CAES)is an effective solution for balancing this mismatch and therefore is suitable for use in future electrical systems to achieve a high penetration of renewable energy generation.This study introduces recent progress in CAES,mainly advanced CAES,which is a clean energy technology that eliminates the use of fossil fuels,compared with two commercial CAES plants at Huntorf and McIntosh which are conventional ones utilizing fossil fuels.Advanced CAES include adiabatic CAES,isothermal CAES,liquid air energy storage,supercritical CAES,underwater CAES,and CAES coupled with other technologies.The principles and configurations of these advanced CAES technologies are briefly discussed and a comprehensive review of the state-of-the-art technologies is presented,including theoretical studies,experiments,demonstrations,and applications.The comparison and discussion of these CAES technologies are summarized with a focus on technical maturity,power sizing,storage capacity,operation pressure,round-trip efficiency,efficiency of the components,operation duration,and investment cost.Potential application trends were compiled.This paper presents a comprehensive reference for developing novel CAES systems and makes recommendations for future research and development to facilitate their application in several areas,ranging from fundamentals to applications.