Laser scanning technology has been widely used in landslide aspects.However,the existing deformation analysis based on terrain laser scanners can only provide limited information,which is insufficient for understandin...Laser scanning technology has been widely used in landslide aspects.However,the existing deformation analysis based on terrain laser scanners can only provide limited information,which is insufficient for understanding landslide kinematics and failure mechanisms.To overcome this limitation,this paper proposes an automated method for processing point clouds collected in landslide physical modeling.This method allows the acquisition of quantitative three-dimensional(3D)deformation field information.The results show the organized and spatially related point cloud segmentation in terms of spherical targets.The segmented point clouds can be fitted to determine the locations of all preset targets and their corresponding location changes.The proposed method has been validated based on theoretical analysis and numerical and physical tests,which indicates that it can batch-process massive data sets with high computational efficiency and good noise resistance.Compared to existing methods,this method shows a significant potential for understanding landslide kinematics and failure mechanisms and advancing the application of 3D laser scanning in geotechnical modeling.展开更多
Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SM...Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.展开更多
This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ...This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.展开更多
With the acceleration of marine construction in China,the exploitation and utilization of resources from islands and reefs are necessary.To prevent and dissipate waves in the process of resource exploitation and utili...With the acceleration of marine construction in China,the exploitation and utilization of resources from islands and reefs are necessary.To prevent and dissipate waves in the process of resource exploitation and utilization,a more effective method is to install floating breakwaters near the terrain of islands and reefs.The terrain around islands and reefs is complex,and waves undergo a series of changes due to the impact of the complex terrain in transmission.It is important to find a suitable location for floating breakwater systems on islands and reefs and investigate how the terrain affects the system’s hydrodynamic performance.This paper introduces a three-cylinder floating breakwater design.The breakwater system consists of 8 units connected by elastic structures and secured by a slack mooring system.To evaluate its effectiveness,a 3D model experiment was conducted in a wave basin.During the experiment,a model resembling the islands and reefs terrain was created on the basis of the water depth map of a specific region in the East China Sea.The transmission coefficients and motion responses of the three-cylinder floating breakwater system were then measured.This was done both in the middle of and behind the islands and reefs terrain.According to the experimental results,the three-cylinder floating breakwater system performs better in terms of hydrodynamics when it is placed behind the terrain of islands and reefs than in the middle of the same terrain.展开更多
A rainstorm caused by mesoscale convective system (MCS) in Guizhou Province in June 25-26 in 2005 was simulated with the MM5 model. Based on the good simulated results of the MCS developing and the clouds physics proc...A rainstorm caused by mesoscale convective system (MCS) in Guizhou Province in June 25-26 in 2005 was simulated with the MM5 model. Based on the good simulated results of the MCS developing and the clouds physics process, and by means of reducing the height of Yunnan-Guizhou Plateau and cutting off the middle-east of the Yunnan-Guizhou Plateau on the simulated tests, the question as how the ladder terrain on the west of Yunnan-Guizhou Plateau impact on the rainstorm of Guizhou was studied. The analysis results showed that the second ladder terrain of Yunnan-Guizhou Plateau only affected the development of convective clouds on its backward position,and hardly affected the rain on its upward. The whole terrain of the Yunnan-Guizhou Plateau had a distinct impact not only on the windward slope rainfall of the west of the plateau, but also on the rainfall distribution, intensity and continuing time of the convective clouds on the middle-east of the plateau.展开更多
To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
In order to slove a realistic test problem of TF/TA algorithm, it is necessary to make a discrete terrain model. The model has adjustable roughness parameters so as to test the optimization procedure for different typ...In order to slove a realistic test problem of TF/TA algorithm, it is necessary to make a discrete terrain model. The model has adjustable roughness parameters so as to test the optimization procedure for different types of terrain. In this paper, an algorithm to generate random terrain data is given.展开更多
基金the National Natural Science Foundation of China(Grant No.42020104006).
文摘Laser scanning technology has been widely used in landslide aspects.However,the existing deformation analysis based on terrain laser scanners can only provide limited information,which is insufficient for understanding landslide kinematics and failure mechanisms.To overcome this limitation,this paper proposes an automated method for processing point clouds collected in landslide physical modeling.This method allows the acquisition of quantitative three-dimensional(3D)deformation field information.The results show the organized and spatially related point cloud segmentation in terms of spherical targets.The segmented point clouds can be fitted to determine the locations of all preset targets and their corresponding location changes.The proposed method has been validated based on theoretical analysis and numerical and physical tests,which indicates that it can batch-process massive data sets with high computational efficiency and good noise resistance.Compared to existing methods,this method shows a significant potential for understanding landslide kinematics and failure mechanisms and advancing the application of 3D laser scanning in geotechnical modeling.
基金supported by the National Natural Science Foundation of China(No.U2142206).
文摘Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.
基金Sponsored by the Fundamental Research Funds for the Central Universities of China(Grant No.PA2023IISL0098)the Hefei Municipal Natural Science Foundation(Grant No.202201)+1 种基金the National Natural Science Foundation of China(Grant No.62071164)the Open Fund of Information Materials and Intelligent Sensing Laboratory of Anhui Province(Anhui University)(Grant No.IMIS202214 and IMIS202102)。
文摘This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.
基金financially supported by the China National Funds for Distinguished Young Scientists(Grant No.52025112).
文摘With the acceleration of marine construction in China,the exploitation and utilization of resources from islands and reefs are necessary.To prevent and dissipate waves in the process of resource exploitation and utilization,a more effective method is to install floating breakwaters near the terrain of islands and reefs.The terrain around islands and reefs is complex,and waves undergo a series of changes due to the impact of the complex terrain in transmission.It is important to find a suitable location for floating breakwater systems on islands and reefs and investigate how the terrain affects the system’s hydrodynamic performance.This paper introduces a three-cylinder floating breakwater design.The breakwater system consists of 8 units connected by elastic structures and secured by a slack mooring system.To evaluate its effectiveness,a 3D model experiment was conducted in a wave basin.During the experiment,a model resembling the islands and reefs terrain was created on the basis of the water depth map of a specific region in the East China Sea.The transmission coefficients and motion responses of the three-cylinder floating breakwater system were then measured.This was done both in the middle of and behind the islands and reefs terrain.According to the experimental results,the three-cylinder floating breakwater system performs better in terms of hydrodynamics when it is placed behind the terrain of islands and reefs than in the middle of the same terrain.
文摘A rainstorm caused by mesoscale convective system (MCS) in Guizhou Province in June 25-26 in 2005 was simulated with the MM5 model. Based on the good simulated results of the MCS developing and the clouds physics process, and by means of reducing the height of Yunnan-Guizhou Plateau and cutting off the middle-east of the Yunnan-Guizhou Plateau on the simulated tests, the question as how the ladder terrain on the west of Yunnan-Guizhou Plateau impact on the rainstorm of Guizhou was studied. The analysis results showed that the second ladder terrain of Yunnan-Guizhou Plateau only affected the development of convective clouds on its backward position,and hardly affected the rain on its upward. The whole terrain of the Yunnan-Guizhou Plateau had a distinct impact not only on the windward slope rainfall of the west of the plateau, but also on the rainfall distribution, intensity and continuing time of the convective clouds on the middle-east of the plateau.
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
文摘In order to slove a realistic test problem of TF/TA algorithm, it is necessary to make a discrete terrain model. The model has adjustable roughness parameters so as to test the optimization procedure for different types of terrain. In this paper, an algorithm to generate random terrain data is given.