In this paper, an innovative jet lifted flame with side micro-jets has been proposed and its effects on the flame structure have also been investigated. Due to the changes of the initial combustion conditions, mixing ...In this paper, an innovative jet lifted flame with side micro-jets has been proposed and its effects on the flame structure have also been investigated. Due to the changes of the initial combustion conditions, mixing and aerodynamics which resulted from the perturbation of the side micro-jets, such a lifted jet flame has different flame structure compared with the common premixed flame. Results demonstrate that use of the micro-jets can control, to a certain extent, the flame structure, including the flame length, lift-off distance and blow-off limit. With the same fuel and air flow rate, the flame length with the side micro-jets will decrease about 5%-40% as the air volume ratio a increases from 58%-76%. Compared with the common diffusion flame, the jet flame with the side micro-jets demonstrates to be easier to be a momentum-dominated flame. The flame length with 2 micro-jets is about 5% less than with 6 micro-jets under the same fuel and air flow rate. With the same a, the fewer number of the controlled jets lead to the flame with relatively shorter length, not easier to be blown off and higher NOx emission. With certain fuel flow rate, the critical air volume ratio is largest for the flame with 3 micro-jets, which is more difficult to be blown off than the cases with 2, 4 or 6 micro-jets.展开更多
Three-dimensional(3D)micro-jet printing is a droplet deposition technique based on liquid-phase materials.To improve the deposition density and performance of energetic films with micro/nanoscale on an energetic chip,...Three-dimensional(3D)micro-jet printing is a droplet deposition technique based on liquid-phase materials.To improve the deposition density and performance of energetic films with micro/nanoscale on an energetic chip,polydopamine(PDA)was utilized as a linker bridge to induce the in-situ self-assembly of CL-20-based energetic film via 3D micro-jet printing.The self-assembly was extensively characterized by confocal laser scanning microscopy(CLSM),SEM,power-XRD,XPS,and DSC.The performance of the self-assembled film was verified by the mechanical properties and detonation properties,and a possible self-assembly mechanism in the layer-by-layer micro-jet printing process was proposed.The results indicated PDA-induced self-assembly enhanced the physical entanglement between the binders and energetic crystal,reduced the porosity from 15.87%to 11.28%,and improved the elastic modulus and the detonation performance of the CL-20-based energetic film.This work proposes a novel and promising energetic film design and fabrication strategy to enhance the interaction between the energetic composite layers in the micro-jet printing process.展开更多
In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in...In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in the present work.The results show that the blow-off limit of micro-jet methane diffusion flame firstly increases and then decreases with the increase of tube-wall thickness.Subsequently,the underlying mechanisms responsible for the above non-monotonic blow-off limit are discussed in terms of the flow filed,strain effect and conjugate heat exchange.The analysis indicates that the flow field is insignificant for the non-monotonic blow-off limit.A smaller strain effect can induce the increase of the blow-off limit fromd=0.1 to 0.2 mm,and a worse heat recirculation effect can induce the decrease of the blow-off limit fromd=0.2 to 0.4 mm.The non-monotonic blow-off limit is mainly determined by the heat loss of flame to the tube-wall and the performance of tube-wall on preheating unburned fuel.The smallest heat loss of flame to the tube-wall and the best performance of tube-wall on preheating unburned fuel result in the largest blow-off limit atd=0.2 mm.Therefore,a moderate tube-wall thickness is more suitable to manufacture the micro-jet burner.展开更多
A medical device of micro-jet injection for drug delivery is described in this paper. The device is powered by a Lorentz force driver (or voice coil motor, VCM) and is able to perform pulsed injection through controll...A medical device of micro-jet injection for drug delivery is described in this paper. The device is powered by a Lorentz force driver (or voice coil motor, VCM) and is able to perform pulsed injection through controlling the direction of the current passing through the device. The driving force and the resulting injection pressure are also controllable through control of the current intensity of the VCM. A physical model was established by combining the existing jet injection model with the relationship of the driving force obtained from a finite-element-method (FEM) analysis, and was verified by experimental measurements. The numerical calculation of the physical model reveals the relationship between the injection pressure and the current intensity of VCM under system conditions. In normal cases, the injection dose can be varied. Thus the relationship between the current intensity of VCM and the dose value was numerically obtained under the condition for the maximum injection pressure to be above a threshold value. These results can be used for optimization of the device.展开更多
The operating range of the flow rate or flow velocity for the micro-jet flame is quite wide,which can be used as the heat source.In order to optimize the micro-jet tube combustor in terms of the solid material,the pre...The operating range of the flow rate or flow velocity for the micro-jet flame is quite wide,which can be used as the heat source.In order to optimize the micro-jet tube combustor in terms of the solid material,the present paper numerically investigates the impact of thermal conductivity(λs)on the operating limit of micro-jet flame.Unexpectedly,the non-monotonic blow-off limits with the increase ofλs is found,and the corresponding generation mechanisms are analyzed in terms of the thermal coupling effect,flow field,and strain effect.At first,the lower preheating temperature of the fuel and larger heat loss amount to the environment lead to a larger blow-off limit at a largerλs.After that,the smaller local flow velocity in the vicinity of flame root and smaller strain effect slightly increase the blow-off limit with the continuously increasingλs.Therefore,it is deduced that the applied performance of micro-jet combustor with a smaller thermal conductivity is better in terms of the blow-off limit.展开更多
In the paper, the enhanced measurements of the laser micro-jet processing are discussed. In fact, within pure water breakdown threshold of laser, the less focal which focused with the appropriate focusing lens and the...In the paper, the enhanced measurements of the laser micro-jet processing are discussed. In fact, within pure water breakdown threshold of laser, the less focal which focused with the appropriate focusing lens and the small nozzle of water chamber enhance the laser power density ,at the same time, the laser beam transport in the wave guided water with the proper total reflection angle. The laser power which depended on the properties of the diameter, the coupling water chamber and the coupling efficiency of the micro-jet and laser beam expect of the properties of laser.展开更多
基金Supported by the Natural Science Foundation of Henan Province (20074800060).
文摘In this paper, an innovative jet lifted flame with side micro-jets has been proposed and its effects on the flame structure have also been investigated. Due to the changes of the initial combustion conditions, mixing and aerodynamics which resulted from the perturbation of the side micro-jets, such a lifted jet flame has different flame structure compared with the common premixed flame. Results demonstrate that use of the micro-jets can control, to a certain extent, the flame structure, including the flame length, lift-off distance and blow-off limit. With the same fuel and air flow rate, the flame length with the side micro-jets will decrease about 5%-40% as the air volume ratio a increases from 58%-76%. Compared with the common diffusion flame, the jet flame with the side micro-jets demonstrates to be easier to be a momentum-dominated flame. The flame length with 2 micro-jets is about 5% less than with 6 micro-jets under the same fuel and air flow rate. With the same a, the fewer number of the controlled jets lead to the flame with relatively shorter length, not easier to be blown off and higher NOx emission. With certain fuel flow rate, the critical air volume ratio is largest for the flame with 3 micro-jets, which is more difficult to be blown off than the cases with 2, 4 or 6 micro-jets.
文摘Three-dimensional(3D)micro-jet printing is a droplet deposition technique based on liquid-phase materials.To improve the deposition density and performance of energetic films with micro/nanoscale on an energetic chip,polydopamine(PDA)was utilized as a linker bridge to induce the in-situ self-assembly of CL-20-based energetic film via 3D micro-jet printing.The self-assembly was extensively characterized by confocal laser scanning microscopy(CLSM),SEM,power-XRD,XPS,and DSC.The performance of the self-assembled film was verified by the mechanical properties and detonation properties,and a possible self-assembly mechanism in the layer-by-layer micro-jet printing process was proposed.The results indicated PDA-induced self-assembly enhanced the physical entanglement between the binders and energetic crystal,reduced the porosity from 15.87%to 11.28%,and improved the elastic modulus and the detonation performance of the CL-20-based energetic film.This work proposes a novel and promising energetic film design and fabrication strategy to enhance the interaction between the energetic composite layers in the micro-jet printing process.
基金Project(51876074)supported by the National Natural Science Foundation of China。
文摘In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in the present work.The results show that the blow-off limit of micro-jet methane diffusion flame firstly increases and then decreases with the increase of tube-wall thickness.Subsequently,the underlying mechanisms responsible for the above non-monotonic blow-off limit are discussed in terms of the flow filed,strain effect and conjugate heat exchange.The analysis indicates that the flow field is insignificant for the non-monotonic blow-off limit.A smaller strain effect can induce the increase of the blow-off limit fromd=0.1 to 0.2 mm,and a worse heat recirculation effect can induce the decrease of the blow-off limit fromd=0.2 to 0.4 mm.The non-monotonic blow-off limit is mainly determined by the heat loss of flame to the tube-wall and the performance of tube-wall on preheating unburned fuel.The smallest heat loss of flame to the tube-wall and the best performance of tube-wall on preheating unburned fuel result in the largest blow-off limit atd=0.2 mm.Therefore,a moderate tube-wall thickness is more suitable to manufacture the micro-jet burner.
文摘A medical device of micro-jet injection for drug delivery is described in this paper. The device is powered by a Lorentz force driver (or voice coil motor, VCM) and is able to perform pulsed injection through controlling the direction of the current passing through the device. The driving force and the resulting injection pressure are also controllable through control of the current intensity of the VCM. A physical model was established by combining the existing jet injection model with the relationship of the driving force obtained from a finite-element-method (FEM) analysis, and was verified by experimental measurements. The numerical calculation of the physical model reveals the relationship between the injection pressure and the current intensity of VCM under system conditions. In normal cases, the injection dose can be varied. Thus the relationship between the current intensity of VCM and the dose value was numerically obtained under the condition for the maximum injection pressure to be above a threshold value. These results can be used for optimization of the device.
文摘The operating range of the flow rate or flow velocity for the micro-jet flame is quite wide,which can be used as the heat source.In order to optimize the micro-jet tube combustor in terms of the solid material,the present paper numerically investigates the impact of thermal conductivity(λs)on the operating limit of micro-jet flame.Unexpectedly,the non-monotonic blow-off limits with the increase ofλs is found,and the corresponding generation mechanisms are analyzed in terms of the thermal coupling effect,flow field,and strain effect.At first,the lower preheating temperature of the fuel and larger heat loss amount to the environment lead to a larger blow-off limit at a largerλs.After that,the smaller local flow velocity in the vicinity of flame root and smaller strain effect slightly increase the blow-off limit with the continuously increasingλs.Therefore,it is deduced that the applied performance of micro-jet combustor with a smaller thermal conductivity is better in terms of the blow-off limit.
文摘In the paper, the enhanced measurements of the laser micro-jet processing are discussed. In fact, within pure water breakdown threshold of laser, the less focal which focused with the appropriate focusing lens and the small nozzle of water chamber enhance the laser power density ,at the same time, the laser beam transport in the wave guided water with the proper total reflection angle. The laser power which depended on the properties of the diameter, the coupling water chamber and the coupling efficiency of the micro-jet and laser beam expect of the properties of laser.