期刊文献+
共找到11,119篇文章
< 1 2 250 >
每页显示 20 50 100
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer 被引量:1
1
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Ultra wear resistant TiC-Fe coating prepared by high efficient and economic plasma cladding method
2
作者 黄大牛 仝永刚 +4 位作者 华熳煜 牟泓霖 柳建 蔡志海 胡永乐 《China Welding》 CAS 2024年第1期20-26,共7页
The key components of engineering machinery frequently failed due to working in the high load and high wear operating envir-onment.And the performance of the Fe-based alloy coatings typically employed need to be impro... The key components of engineering machinery frequently failed due to working in the high load and high wear operating envir-onment.And the performance of the Fe-based alloy coatings typically employed need to be improved for fulfilling the service requirements.Herein,a TiC strengthened Fe-based alloy cladding layer,named TiC-Fe coating,was designed and prepared by plasma cladding technology.The frictional wear performance of coating under various loads was tested.The wear morphology of the coating was observed,and its wear mechanism was examined.The results indicated that the TiC-Fe coating was well formed and metallurgically bonded to the Q345C substrate.Its microstructure mainly consisted of Fe-Cr solid solution,α-Fe phase,(Fe,Cr)_(7)C_(3) phase and TiC phase.The coating exhibited an average microhardness of 980 HV0.2,which was about 5.4 times that of the Q345C substrate.The wear mass loss of the TiC-Fe coatings was much smaller than that of the Q345C substrate,which indicated that the wear resistance of the Q345C coating was superior to the substrate,and the wear mechanism of the coating was mainly attributed to the abrasive wear. 展开更多
关键词 plasma cladding TIC MICROSTRUCTURE wear resistance
下载PDF
Wear resistance performance of high entropy alloy–ceramic coating composites synthesized via a novel combined process 被引量:1
3
作者 Junyu Chen Yu Yang +3 位作者 Yuzheng Pan Yang You Liwen Hu Meilong Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期202-213,共12页
Titanium nitride(TiN), characterized by its high hardness and strength, was widely used as ceramic coating to improve the wear resistance of matrix materials. In this work, AlCrFeNiTi_(x) high-entropy alloy(HEA) powde... Titanium nitride(TiN), characterized by its high hardness and strength, was widely used as ceramic coating to improve the wear resistance of matrix materials. In this work, AlCrFeNiTi_(x) high-entropy alloy(HEA) powders were synthesized by direct electrochemical reduction in molten salt from the mixed metal oxides. Then,TiN ceramic coating on the AlCrFeNiTi_x bulk HEA containing the topologically close-packed(TCP) phase(σphase, Laves phase, and Ti_(3)Al phase) was prepared by vacuum hot pressing sintering, where nitride element come from boron nitride parting agent sprayed on the graphite mold. The effect of titanium content on the crystal structure, microstructure, hardness, and wear resistance of the products were investigated by X-ray diffraction, field emission scanning electron microscope, field emission electron-probe microanalysis,Vickers hardness tester, and friction–abrasion testing machine. The bulk HEAs exhibit excellent hardness and its hardness increases significantly with the increase of titanium content. The wear mechanism changes from both of predominantly delamination and accompanied oxidative wear to single delamination wear,which is due to ultra-high melting point and high hot hardness of TiN, that can effectively prevent the oxidation and deformation of the worn surface. Formation of the ceramic coatings containing the TiN second phase and TCP phase are the key factor to AlCrFeNiTi_x alloy with the excellent hardness and wear properties. 展开更多
关键词 High-entropy alloys Electrochemical reduction Vacuum hot pressing sintering HARDNESS wear resistance
下载PDF
Design and Development of Composite Plywood that Integrates Fire Resistance,Water Resistance and Wear Resistance
4
作者 Xingyu Liang Xiaoyu Gu +4 位作者 Myint Myint Paing Hsu Yuhang He Rongzhuo Zhang Conghui Cai Zheng Wang 《Journal of Renewable Materials》 SCIE EI 2023年第5期2333-2344,共12页
In order to improve the fire resistance,water resistance and wear resistance of ordinary plywood products in the wood processing industry,three composite structures of plywood products S1,S2 and S3 were designed in th... In order to improve the fire resistance,water resistance and wear resistance of ordinary plywood products in the wood processing industry,three composite structures of plywood products S1,S2 and S3 were designed in this paper,and a reasonable production process was proposed.Through the physical and mechanical properties and fire resistance testing and technical and economic analysis,the applicability of composite plywood was evaluated.The results of the study showed that the physical mechanics of the three kinds of composite structure plywood met the standard requirements,and their fire resistance was far better than that of ordinary plywood.Among them,the S1 structural board had the best overall physical and mechanical properties.The S3 structural board showed the best fire resistance,which was about 1.9 times more than that of ordinary plywood,and the added cost was the lowest.The thin cork board added to the S2 structural board had poor fire performance since the air in the cork board cavities had a certain combustion-supporting effect,which inhibited the fire resistance of high-pressure laminate(HPL)layer.Moreover,the additional cost of the S2 board was the highest,and its comprehensive performance was the worst.The S3 structural plywood product composed of HPL fireproof board with a thickness of about 1 mm in the surface layer and ordinary plywood with a thickness of about 12 mm in the core layer was the most cost-effective product,which could meet the needs of various fields such as construction,home furnishing,decoration and transportation. 展开更多
关键词 wear resistance PLYWOOD structural design and development physical and mechanical properties fire resistance
下载PDF
Effect of heat treatment on microstructure and mechanical properties of Ti-containing low alloy martensitic wear-resistant steel 被引量:3
5
作者 Kai Lan Wang Ding Yi-tao Yang 《China Foundry》 SCIE CAS CSCD 2023年第4期329-338,共10页
Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector... Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively. 展开更多
关键词 low alloy wear-resistant steel quenching temperature cooling condition PRECIPITATE retained austenite wear resistance
下载PDF
A super wear-resistant coating for Mg alloys achieved by plasma electrolytic oxidation and discontinuous deposition 被引量:1
6
作者 Xixi Dong Mingxu Xia +4 位作者 Feng Wang Hailin Yang Gang Ji E.A.Nyberg Shouxun Ji 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2939-2952,共14页
Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼1... Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼14µm thick and rough PEO protection layer has inferior wear resistance,which limits magnesium alloys as sliding or reciprocating parts,where magnesium alloys have special advantages by their inherent damping and denoising properties and attractive light-weighting.Here a novel super wear-resistant coating for magnesium alloys was achieved,via the discontinuous sealing(DCS)of a 1.3µm thick polytetrafluoroethylene(PTFE)polymer layer with an initial area fraction(A_(f))of 70%on the necessary PEO protection layer by selective spraying,and the wear resistance was exceptionally enhanced by∼5500 times in comparison with the base PEO coating.The initial surface roughness(Sa)under PEO+DCS(1.54µm)was imperfectly 59%higher than that under PEO and conventional continuous sealing(CS).Interestingly,DCS was surprisingly 20 times superior for enhancing wear resistance in contrast to CS.DCS induced nano-cracks that splitted DCS layer into multilayer nano-blocks,and DCS also provided extra space for the movement of nano-blocks,which resulted in rolling friction and nano lubrication.Further,DCS promoted mixed wear of the PTFE polymer layer and the PEO coating,and the PTFE layer(HV:6 Kg·mm^(−2),A_(f):92.2%)and the PEO coating(HV:310 Kg·mm^(−2),A_(f):7.8%)served as the soft matrix and the hard point,respectively.Moreover,the dynamic decrease of Sa by 29%during wear also contributed to the super wear resistance.The strategy of depositing a low-frictional discontinuous layer on a rough and hard layer or matrix also opens a window for achieving super wear-resistant coatings in other materials. 展开更多
关键词 Magnesium alloy COATING Plasma electrolytic oxidation Discontinuous deposition wear resistance MECHANISM
下载PDF
CATHODIC PROCESS AND WEAR RESISTANCE OF ELECTRO-DEPOSITED RE-Ni-W-P-SiC COMPOSITE COATING 被引量:16
7
作者 Z.C.Guo,X.Y.Zhu,R.D.Xu and X.W.YangFaculty of Material and Metallurgy Engineering, Kunming University of Science and Technology, Kunming650093, ChinaManuscript received 26 December 2001 in revised form 23 April 2002 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第4期369-374,共6页
Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-Si... Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-SiC and RE-Ni-W-P-SiC composite coatings. On the contrary, the addition of PTFE in the bath decreases cathodic deposition current density of the coatings. The current density increases a little when the amount of RE is 7-9g/l; however, the current density increases greatly when the amount of RE is increased to 11-13g/l. Bui ij the amount of RE is raised further, the current density decreases. Hardness and wear resistance of RE-Ni-W-P-SiC composite coating have been studied, and the results show that the hardness and wear resistance of RE-Ni-W-P-SiC composite coating increase with increasing heat treatment tempera-ture, which reach peak values at 400℃; while the hardness and wear resistance of the coating decrease with the rise of heat treated temperature continuously. 展开更多
关键词 ELECTRODEPOSITION RE-Ni-W-P-SiC composite coating cathodic process hardness and wear resistance
下载PDF
Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel 被引量:9
8
作者 Li Fan Hai-yan Chen +2 位作者 Yao-hua Dong Li-hua Dong Yan-sheng Yin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第6期716-728,共13页
The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4... The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4130 steel were studied.The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium,tungsten,and cobalt and very little molybdenum.The microstructure mainly consists of dendrites and eutectic phases,such as duplex(γ+α)-Fe and the Fe–Cr(Ni)solid solution,confirmed via energy dispersive spectrometry and X-ray diffraction.The cladded Fe-based coatings have lower coefficients of friction,and narrower and shallower wear tracks than the substrate without the cladding,and the main wear mechanism is mild abrasive wear.Electrochemical test results suggest that the soft Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) coating with high Cr and Ni concentrations has high passivation resistance,low corrosion current,and positive corrosion potential,providing a better protective barrier layer to the AISI 4130 steel against corrosion. 展开更多
关键词 Fe-based coating laser cladding AISI 4130 steel wear resistance corrosion resistance
下载PDF
Effects of nano-Al_2O_3 and nano-ZrO_2 on the microstructure, behavior and abrasive wear resistance of WC-8Co cemented carbide 被引量:7
9
作者 YANG Tian'en XIONG Ji SUN Lan GUO Zhixing QIN Kangcai 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期533-538,共6页
关键词 cemented carbides MICROSTRUCTURE ABRASION wear resistance OXIDES mechanical properties
下载PDF
Heat Treatment Effect on Microstructure, Hardness and Wear Resistance of Cr26 White Cast Iron 被引量:8
10
作者 ZHOU Shaoping SHEN Yehui +1 位作者 ZHANG Hao CHEN Dequan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期140-147,共8页
High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research ... High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 ℃ to 1050 ℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 ℃, followed by a subsequent 2 h tempering at 400 ℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI. 展开更多
关键词 Cr26 white cast iron heat treatment MICROSTRUCTURE HARDNESS wear resistance
下载PDF
Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing 被引量:7
11
作者 I.SUDHAKAR V.MADHU +1 位作者 G.MADHUSUDHAN REDDY K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第1期10-17,共8页
Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter t... Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy. 展开更多
关键词 Armour GRADE aluminium alloy Friction STIR processing Boron carbide Molybdenum DISULPHIDE wear BALLISTIC resistance
下载PDF
Effect of Laser Power on Microstructure and Wear Resistance of WC_P/Ni Cermet Coating 被引量:6
12
作者 SI Song-hua YUAN Xiao-min +2 位作者 LIU Yue-long HE Yi-zhu Keesam Shin 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2006年第3期74-78,共5页
Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power ... Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power of 5 kW using the injected powder technique. The effect of laser power on microstructure and wear resistance of laser cladding WCp/Ni cermet coating was investigated. The WCp/Ni alloy coating with evenly distributed WC ceramic phases and the better bond with the substrate alloy was obtained at a power of 2.2 kW. Diffusion solution reaction happened between WC particles and the substrate alloy during laser cladding, and led to the formation of block rich-tungsten carbide on the edges of the WC particles, especially at higher power. The WCp/Ni alloy coating consists of the undissolved WC particles, the block or dendritic rich-tungsten carbide, the bar-like rich-chromium carbide, and dendrite solid solution and eutectic structure among the carbides. Microhardness and wear resistance of the WCp/Ni coating at different powers were much higher or better than those of Ni60 alloy coating, and the best results were obtained at power of 2.2 kW. 展开更多
关键词 laser power cermet coating MICROSTRUCTURE wear resistance
下载PDF
Influence of vanadium and chromium additions on the wear resistance of a gray cast iron 被引量:5
13
作者 A.Hassani A.Habibollahzadeh S.Sadeghinejad Materials 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第7期602-607,共6页
A low-alloy gray cast iron containing hard carbide-forming elements, such as vanadium and chromium, was cast by sand mould casting. Its wear resistance was compared with that of an untreated gray cast iron. Three diff... A low-alloy gray cast iron containing hard carbide-forming elements, such as vanadium and chromium, was cast by sand mould casting. Its wear resistance was compared with that of an untreated gray cast iron. Three different loading conditions were tested under a con- stant speed. It was observed that this alloy could reduce the wear loss of standard gray cast iron by up to 89%, which was much greater than what was achieved in previous reports. Scanning electron microscopy (SEM) was used to determine the predominant wear mechanism of both the alloys. In a mild wear regime, the oxidative mechanism was predominant; however, in a severe wear regime, this mechanism was not predominant and the adhesive mechanism was involved. EDX analysis was conducted to evaluate the quantitative amounts of elements in the tribochemical films formed on the wear tracks. 展开更多
关键词 cast iron wear resistance carbides VANADIUM CHROMIUM
下载PDF
Effects of Y_2O_3 on the microstructure and wear resistance of cobalt-based alloy coatings deposited by plasma transferred arc process 被引量:7
14
作者 HOU Qingyu HUANG Zhenyi GAO Jiasheng 《Rare Metals》 SCIE EI CAS CSCD 2007年第2期103-109,共7页
Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of th... Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobait-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3 leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties. 展开更多
关键词 cobalt-based alloy plasma transferred arc (PTA) Y2O3 MICROSTRUCTURE wear resistance
下载PDF
Effect of scanning speed during PTA remelting treatment on the microstructure and wear resistance of nodular cast iron 被引量:6
15
作者 Hua-tang Cao Xuan-pu Dong +3 位作者 Qi-wen Huang Zhang Pan Jian-jun Li Zi-tian Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第4期363-370,共8页
The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. T... The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, micro-hardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization in-dicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidifica-tion. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3-3.1 times higher than the hardness of the substrate. The wear re-sistance of NCI was also significantly improved after the PTA remelting treatment. 展开更多
关键词 nodular cast iron surface treatment plasma arc remelting scanning speed MICROHARDNESS wear resistance
下载PDF
Wear resistance of Zr/WC composite coatings on Cr12MoV steel surface by electric spark deposition 被引量:6
16
作者 于华 龙伟民 +2 位作者 钟素娟 王军政 魏世忠 《China Welding》 EI CAS 2019年第1期35-41,共7页
Zr/WC composite coating was prepared on the surface of Cr12MoV steel by electric spark deposition technology to change its surface properties. The surface and worn surface morphology of the coating were observed using... Zr/WC composite coating was prepared on the surface of Cr12MoV steel by electric spark deposition technology to change its surface properties. The surface and worn surface morphology of the coating were observed using scanning electron microscope. Dry friction and wear tests of the coatings were carried out at room temperature. The results show that the coating is continuous and uniform, and the thickness was about 50-60 μm. The microhardness of the coating surface was highest at 1140 HV_(200g), which was significantly higher than that of the substrate. The ear tests results show that the wear weight loss, wear volume and wear rate follow the following rules: Cr12MoV>WC coating> Zr/WC composite coating. 展开更多
关键词 CR12MOV Zr/WC ELECTRIC SPARK DEPOSITION composite coating wear resistance
下载PDF
Microstructure and wear resistance of highchromium cast iron containing niobium 被引量:4
17
作者 Zhang Zhiguo Yang Chengkai +1 位作者 Zhang Peng Li Wei 《China Foundry》 SCIE CAS 2014年第3期179-184,共6页
In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heattreated al... In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heattreated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content. 展开更多
关键词 high CHROMIUM cast irons NbC hardness impact TOUGHNESS wear resistance
下载PDF
Effect of molybdenum on the microstructure and wear resistance of hypoeutectic Fe-Cr-B-C hardfacing alloys 被引量:4
18
作者 汪圣林 崔丽 +2 位作者 贺定勇 刘昊 王旭 《China Welding》 EI CAS 2018年第4期46-51,共6页
Hypoeutectic Fe-Cr-B-C hardfacing alloys with different molybdenum( Mo) contents( The design content was 0,2,3. 3 and 4. 5 wt. %,respectively) were deposited using the flux-cored wire by means of metal active gas arc ... Hypoeutectic Fe-Cr-B-C hardfacing alloys with different molybdenum( Mo) contents( The design content was 0,2,3. 3 and 4. 5 wt. %,respectively) were deposited using the flux-cored wire by means of metal active gas arc welding. The effects of Mo on the refinement of microstructures,eutectic microstructure changes and improvement of wear resistance were investigated. The main results were shown as follows: the added Mo could increase the volume fraction of eutectic microstructure and reduce the size of coarse primary austenite as well as the volume fraction. The carboboride of M3( B,C) could be observed in hypoeutectic Fe-Cr-B-C hardfacing alloys at the Mo design content of ≤2. 0 wt. %,while that of M23( B,C)6was formed when 3. 3 wt. % Mo was added.Additionally,the wear resistance of alloys was increased with the increase in Mo content. Specifically,the highest wear resistance of alloys was achieved at 4. 5 wt. % Mo design content,which was 113. 7% higher than that in alloys without Mo. 展开更多
关键词 HYPOEUTECTIC hardfacing alloy MICROSTRUCTURE wear resistance MOLYBDENUM
下载PDF
Effects of Si alloying and T6 treatment on mechanical properties and wear resistance of ZA27 alloys 被引量:4
19
作者 Rui Zhang Guang-lei Liu +3 位作者 Nai-chao Si Yu-yang Peng Hao Wan Ting Liu 《China Foundry》 SCIE 2016年第2期93-100,共8页
To improve the mechanical properties and wear resistance of ZA27 alloy, Si was introduced to the alloy, and the effect of Si alloying and T6 heat treatment on the microstructure, mechanical properties and wear resista... To improve the mechanical properties and wear resistance of ZA27 alloy, Si was introduced to the alloy, and the effect of Si alloying and T6 heat treatment on the microstructure, mechanical properties and wear resistance was investigated. The results show that with 0.55% Si, the microstructure of the alloy can be refined effectively, which leads to the increase of hardness. But the tensile strength and elongation decrease because Si undermines the integrity of the matrix. On the other hand, the dendrites are transformed into a desired α+η+(α+η)mixture with T6 heat treatment, which introduces a remarkable increase to the elongation and hardness of the alloy. The wear resistance of the ZA27 alloy with Si alloying is significantly better than that of the ZA27 alloy without Si. With the increase of Si addition, the wear resistance of the alloy firstly increases and then decreases.In the alloy without Si alloying, severe plastic deformation and large delamination were observed on the worn surface of the alloy. However, with the increase of Si, the main wear mechanism transformed to abrasive wear gradually. In addition, the T6 treatment can further improve the wear resistance of the alloy with Si alloying. 展开更多
关键词 ZA27 alloy Si alloying mechanical properties wear resistance
下载PDF
Electron-beam Treatment of Tungsten-free TiC/NiCr Cermet Ⅰ:Influence of Subsurface Layer Microstructure on Resistance to Wear during Cutting of Metals 被引量:3
20
作者 V.E.Ovcharenko BaohaiYU S.G.Psakhie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第3期427-429,共3页
An experimental investigation were performed on the effect of the impulse electron-beam irradiation upon microstruc-ture of the surface layer and on wear resistance of a cutting tool for sintered TiC/NiCr cermet. The ... An experimental investigation were performed on the effect of the impulse electron-beam irradiation upon microstruc-ture of the surface layer and on wear resistance of a cutting tool for sintered TiC/NiCr cermet. The results showed that the surface electron-beam treatment of the TiC/NiCr cermet is an efficient method for investigating the mi-crostructure and phase composition in the surface layer of the powder composite and there are optimal regimes of electron-beam treatment, which ensure a substantial increase in the resistance of the cermet to wear during cutting of metals. 展开更多
关键词 CERMET TiC/NiCr Electron-beam treatment MICROSTRUCTURE wear resistance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部