Appropriate materials collaborated with reasonable structure can significantly increase the separator performance for lithium-ion batteries.In this work,taking the advantages of microfibrous and nanofibrous membranes ...Appropriate materials collaborated with reasonable structure can significantly increase the separator performance for lithium-ion batteries.In this work,taking the advantages of microfibrous and nanofibrous membranes and compensating for their defects,we developed a composited separator(GOPPH)with excellent overall performance by first wetting-modifying the polyethylene terephthalate microfibers and then laminating a polyvinylidene fluoride-hexafluoropropylene nanofiber layer.Such a combination not only offers the GOPPH separator,from the perspective of structure,with high porosity and hierarchical structure in terms of fiber diameter and pore size,but also provides satisfactory features including wettability,mechanical strength and thermal shutdown function that benefit from the selected materials.Meanwhile,as determined by experimental and theoretical approaches,the obtained GOPPH separator exhibits considerably enhanced lithium ion transport ability with a high lithium ion transference number and transport rate,which thereby endowing the cell with superior cycling stability with a capacity retention of 93%after 200 cycles at 1 C.Therefore,considering battery safety and performance,the GOPPH fibrous membrane could be a promising separator candidate for lithium-ion batteries.展开更多
“Sweet sections”in giant shale oil provinces are preferential fields that primarily support China to increase the reserves and production of continental shale oil.Based on the study of the geological conditions of s...“Sweet sections”in giant shale oil provinces are preferential fields that primarily support China to increase the reserves and production of continental shale oil.Based on the study of the geological conditions of shale oil in the continental basins in China,it was found that the shale stratum in major oil generation windows generally has higher degrees of oil and gas accumulation,and mostly contains oil.Hydrocarbon generation and reservoir capacities are the two key parameters for evaluating and optimizing favorable shale oil provinces.The evaluation index(volume of shale stratum multiplied by total organic carbon(TOC)multiplied by total porosity)for the giant continental shale oil provinces is also proposed.It is optimized that the Upper Triassic Chang 7 Member in the southcentral Ordos Basin,Lower Cretaceous Qing 1 Member in the Gulong-Changling Sag in the Songliao Basin,Middle-Lower Permian in the Junggar Basin,Da’anzhai Member of the Ziliujing Formation of Lower Jurassic in the central and northern Sichuan Basin,and Paleogene oil-rich sag in the Bohai Bay Basin are the five giant continental shale oil provinces.The word“geological sweet sections”in continental shale oil provinces of China refers to favorable shale intervals which are relatively rich in oil,with superior physical properties,and more easily modified and developed commercially under applicable economic and technological conditions.After evaluation,there are mainly two types of“geological sweet sections”of giant continental shale oil developed onshore in China.One type of“geological sweet sections”is generally mudstone with optimal physical properties or a thin tight reservoir,to which the shale oil migrates a short distance.They are medium-to-high-mature zones with a thin sandy shale stratum in the Chang 7 Member in the Ordos Basin,mixed shale stratum in the mediummature Lucaogou Formation in the Jimsar Sag,and multi-layered mixed Paleogene shale stratum in the Bohai Bay Basin.The other type of“geological sweet sections”is generally shale oil residing in various shale reservoir spaces.This type was developed in the Qing 1 Member in the Gulong Sag and Da’anzhai Member in the north-central Sichuan Basin.Free shale oil mainly occurs in shale,sandycarbonate lamina,micro-lamella structure,and micro-fractures.Layers with lamina,lamination,and micro-fractures are generally shale oil“geological sweet sections.”Starting from field tests and the construction of the“geological sweet sections”in giant continental shale oil provinces,the shale oil industry has been rapidly developing and will become an important supplement to domestic oil production in China.展开更多
基金the National Science Foundation of Jiangsu Province,China(No.BK20190223)Jiangsu Advanced Textile Engineering Technology Center(No.XJFZ/2021/15)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.22KJA480004).
文摘Appropriate materials collaborated with reasonable structure can significantly increase the separator performance for lithium-ion batteries.In this work,taking the advantages of microfibrous and nanofibrous membranes and compensating for their defects,we developed a composited separator(GOPPH)with excellent overall performance by first wetting-modifying the polyethylene terephthalate microfibers and then laminating a polyvinylidene fluoride-hexafluoropropylene nanofiber layer.Such a combination not only offers the GOPPH separator,from the perspective of structure,with high porosity and hierarchical structure in terms of fiber diameter and pore size,but also provides satisfactory features including wettability,mechanical strength and thermal shutdown function that benefit from the selected materials.Meanwhile,as determined by experimental and theoretical approaches,the obtained GOPPH separator exhibits considerably enhanced lithium ion transport ability with a high lithium ion transference number and transport rate,which thereby endowing the cell with superior cycling stability with a capacity retention of 93%after 200 cycles at 1 C.Therefore,considering battery safety and performance,the GOPPH fibrous membrane could be a promising separator candidate for lithium-ion batteries.
基金supported by the National High-Level Special Talent Support Plan(the fourth batch)the PetroChina’s“14th Five Year Plan”Forward-Looking Basic Science and Technology Project(No.2021DJ18)。
文摘“Sweet sections”in giant shale oil provinces are preferential fields that primarily support China to increase the reserves and production of continental shale oil.Based on the study of the geological conditions of shale oil in the continental basins in China,it was found that the shale stratum in major oil generation windows generally has higher degrees of oil and gas accumulation,and mostly contains oil.Hydrocarbon generation and reservoir capacities are the two key parameters for evaluating and optimizing favorable shale oil provinces.The evaluation index(volume of shale stratum multiplied by total organic carbon(TOC)multiplied by total porosity)for the giant continental shale oil provinces is also proposed.It is optimized that the Upper Triassic Chang 7 Member in the southcentral Ordos Basin,Lower Cretaceous Qing 1 Member in the Gulong-Changling Sag in the Songliao Basin,Middle-Lower Permian in the Junggar Basin,Da’anzhai Member of the Ziliujing Formation of Lower Jurassic in the central and northern Sichuan Basin,and Paleogene oil-rich sag in the Bohai Bay Basin are the five giant continental shale oil provinces.The word“geological sweet sections”in continental shale oil provinces of China refers to favorable shale intervals which are relatively rich in oil,with superior physical properties,and more easily modified and developed commercially under applicable economic and technological conditions.After evaluation,there are mainly two types of“geological sweet sections”of giant continental shale oil developed onshore in China.One type of“geological sweet sections”is generally mudstone with optimal physical properties or a thin tight reservoir,to which the shale oil migrates a short distance.They are medium-to-high-mature zones with a thin sandy shale stratum in the Chang 7 Member in the Ordos Basin,mixed shale stratum in the mediummature Lucaogou Formation in the Jimsar Sag,and multi-layered mixed Paleogene shale stratum in the Bohai Bay Basin.The other type of“geological sweet sections”is generally shale oil residing in various shale reservoir spaces.This type was developed in the Qing 1 Member in the Gulong Sag and Da’anzhai Member in the north-central Sichuan Basin.Free shale oil mainly occurs in shale,sandycarbonate lamina,micro-lamella structure,and micro-fractures.Layers with lamina,lamination,and micro-fractures are generally shale oil“geological sweet sections.”Starting from field tests and the construction of the“geological sweet sections”in giant continental shale oil provinces,the shale oil industry has been rapidly developing and will become an important supplement to domestic oil production in China.