In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t...In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including ...One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.展开更多
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ...This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries.展开更多
In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fat...In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fatigue damage of metallic materials due to the collective behavior of micro-cracks is quantified by using the generalized self-consistent method. The influence of temperature on fatigue damage of steel structures is quantified by using the previous creep damage model. In addition, the fatigue damage at room temperature and creep damage is coupled in the multi-scale fatigue damage model. The validity of the developed multi-scale damage model is verified by comparing the predicted damage evolution curve with the experimental data. It shows that the developed model is effectiveness. Finally, the fatigue analysis on steel crane runway girders (CRGs) of industrial steel melt shop is performed based on the developed model.展开更多
Nb3Sn and other A15 members have been widely applied in nuclear power, nuclear magnetic resonance, and high-energy particle accelerators for their high critical current density (Jc) and upper critical field (Bc2)....Nb3Sn and other A15 members have been widely applied in nuclear power, nuclear magnetic resonance, and high-energy particle accelerators for their high critical current density (Jc) and upper critical field (Bc2). There have been comprehensive and intensive studies on the applications, the fundamental lattice dynamic and electronic properties, etc., of A15 superconductors. Various reviews on the preparations, structures, and properties have already been written in the last few years. Nevertheless, on account of the large amount of existing facts and views, a coherent view on the relations between the structures and properties has not appeared to unify the facts. This article sketches a multi-scale point of view on the relations between the multi- scale structures and the corresponding properties.展开更多
Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using n...Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using novel processing technologies: super-heated steaming(SHS), auto-electric cooking(AEC), and pressurized-steam cooking(PSC). Additionally, the effect of two different target water contents(58% and 63%) was also evaluated. The PSC_63% sample had the highest total solids and amylopectin amount in the leachate. The amylopectin amount in the leachate differed significantly based on the targeted water content. Morphological characterization revealed that the swelling of starch and the coated layer on the surface of rice grains were most pronounced in the PSC_63% sample due to the pressure processing. The textural hardness of the AEC_58% sample was much higher than that of the other samples. The PSC_63% sample had the highest textural adhesiveness value, which can be attributed to the highest amylopectin amount in the leachate. Sensory characterization showed that the PSC_63% sample had the highest glossiness, whiteness, moistness, and overall acceptability. The principal component analysis score plots presented substantial differences in the leachate and textural and sensory characteristics of reheated convenience rice among the different processing technologies.展开更多
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima...Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods.展开更多
Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl...Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl ammonium bromide (CTAB) is employed as a surfactant. After modifying the particles with heptadecafluorodecyltrimethoxy-silane (HTMS), we find that the water contact angle (WCA) of the FeSe2 particles increases by 6.1~ and the water sliding angle (WSA) decreases by 2.5~ respectively, and the diffuse reflectivity decreases 29.4% compared with similar FeSe2 particles synthe- sized by the conventional method. The growth process of the particles is analyzed and a growth scenario is given. Upon altering the PH values of the water, we observe that the superhydrophobic property is maintained quite consistently across a wide PH range of 1-14. Moreover, the modified particles were also found to be superoleophobic. To the best of our knowledge, there is no systematic research on the wettability of FeSe2 particles, so our research provides a reference for other researchers.展开更多
The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons gr...The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature.展开更多
This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure d...This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining.展开更多
Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0...Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0μm are composed of lots of nanoparticles of 20 to 30 nm,and have the well-developed interconnected pore structure.In contrast,when Mn doping content is 3 mol%(x=0.03),the Li Fe(0.97)Mn(0.03)PO4/C demonstrates maximum specific surface area of 31.30 m^2/g,more uniform pore size and relatively better electrochemical performance.The initial discharge capacities are 161.59,157.04 and 153.13 m Ah/g at a discharge rate of 0.2,0.5 and 1 C,respectively.Meanwhile,the discharge capacity retentions are~100%after 120 cycles.The improved electrochemical performance should be attributed to higher specific surface,smaller polarization voltage,and a high Li~+diffusion rate due to the micro-nano porous structure and lattice expansion produced by Mn doping.展开更多
The Qilian Orogen Zone(QOZ), located in the north margin of the Tibetan Plateau, is the key area for understanding the deformation and dynamics process of Tibet. Numerous geological and geophysical studies have been c...The Qilian Orogen Zone(QOZ), located in the north margin of the Tibetan Plateau, is the key area for understanding the deformation and dynamics process of Tibet. Numerous geological and geophysical studies have been carried out on the mechanics of the Tibetan Plateau deformation and uplift; however, the detailed structure and deformation style of the Qilian Orogen Zone have remained uncertain due to poor geophysical data coverage and limited resolution power of inversion algorithms. In this study, we analyze the P-wave velocity structure beneath the Qilian Orogen Zone, obtained by applying multi-scale seismic tomography technique to P-wave arrival time data recorded by regional seismic networks. The seismic tomography algorithm used in this study employs sparsity constraints on the wavelet representation of the velocity model via L1-norm regularization. This algorithm can deal efficiently with uneven-sampled volumes, and can obtain multi-scale images of the velocity model. Our results can be summarized as follows:(1) The crustal velocity structure is strongly inhomogeneous and consistent with the surface geological setting. Significant low-velocity anomalies exist in the crust of northeastern Tibet, and slight high-velocity anomalies exist beneath the Qaidam Basin and Alxa terrane.(2)The Qilian Orogen Zone can be divided into two main parts by the Laji Shan Faults: the northwestern part with a low-velocity feature, and the southeastern part with a high-velocity feature at the upper and middle crust.(3) Our tomographic images suggest that northwestern and southeastern Qilian Orogen Zones have undergone different tectonic processes. In the northwest Qilian Orogen Zone, the deformation and growth of the Northern Tibetan Plateau has extended to the Heli Shan and Beida Shan region by northward overthrusting at the upper crust and thickening in the lower crust. We speculate that in the southeast Qilian Orogen Zone the deformation and growth of the Northern Tibet Plateau were of strike-slip style at the upper crust; in the lower crust, the evidence suggests ductile shear extrusion style and active frontage extension to the Alxa terrane.(4) The multi-scale seismic tomography technique provides multiscale analysis and sparse constraints, which has allowed to us obtain stable, high-resolution results.展开更多
Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution re...Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)have limited the practical application of rechargeable metal-air batteries.Most of reviews were focused on single functional electrocatalysts while few on bifunctional electrocatalysts.It is indispensable but challenging to design a bifunctional electrocatalyst that is active and stable to the two reactions.Recently,attempts to develop high active bifunctional electrocatalysts for both ORR and OER increase rapidly.Much work is focused on the micro-nano design of advanced structures to improve the performance of bifunctional electrocatalyst.Transition-metal materials,carbon materials and composite materials,and the methods developed to prepare micro-nano structures,such as electrochemical methods,chemical vapor deposition,hydrothermal methods and template methods are reported in literatures.Additionally,many strategies,such as adjustments of electronic structures,oxygen defects,metal-oxygen bonds,interfacial strain,nano composites,heteroatom doping etc.,have been used extensively to design bifunctional electrocatalysts.To well understand the achievements in the recent literatures,this review focuses on the micro-nano structural design of materials,and the related methods and strategies are classed into two groups for the improvement of intrinsic and apparent activities.The fine adjustment of nano structures and an in-depth understanding of the reaction mechanism are also discussed briefly.展开更多
This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent-up gas-solid flow. The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of str...This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent-up gas-solid flow. The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of structure parameters with solids concentration, showing the tendency for particles to aggregate to form clusters and for fluid to pass around clusters. The global drag coefficient is resolved into that for the dense phase, for the dilute phase and for the so-called inter-phase, all of which can be obtained from their respective phase-specific structure parameters. The computational results show that the drag coefficients of the different phases are quite different, and the global drag coefficient calculated from the EMMS approach is much lower than that from the correlation of Wen and Yu. The simulation results demonstrate that the EMMS approach can well describe the heterogeneous flow structure, and is very promising for incorporation into the two-fluid model or the discrete particle model as the closure law for drag coefficient.展开更多
When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully develope...When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.展开更多
Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied usin...Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.展开更多
In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. L...In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. Logarithmic power spectrum method is also used to calculate depth of gravity field source. The results show that the crustal structure is very complicated beneath Beijing and its surrounding areas. The crustal density exhibits laterally inhomogeneous. There are three large scale tectonic zones in North China, i.e., WNW-striking Zhangjiakou-Bohai tectonic zone (ZBTZ), NE-striking Taihang piedmont tectonic zone (TPTZ) and Cangxian tectonic zone (CTZ). ZBTZ and TPTZ intersect with each other beneath Beijing area and both of them cut through the lithosphere. The upper and middle crusts consist of many small-scale faults, uplifts and depressions. In the lower crust, these small-scale tectonic units disappear gradually, and they are replaced by large-scale tectonic units. In surrounding regions of Beijing, ZBTZ intersects with several other NE-striking tectonic units, such as Cangxian uplift, Jizhong depression and Shanxi Graben System (SGS). In west of Taihangshan uplift, gravity anomalies in upper and middle crusts are correlated with geological and topographic features on the surface. Compared with the crust, the structure is comparatively simple in uppermost mantle. Earthquakes mainly occurred in upper and middle crusts, especially in transitional regions between high gravity anomaly and low gravity anomaly. Occurrence of large earthquakes may be related to the upwelling of upper mantle and asthenosphere heat flow materials, such as Sanhe earthquake (Ms8.0) and Tangshan earthquake (Ms7.8).展开更多
The modeling of porous medium has many applications whose techniques can be used in the fields of automotive, aerospace, oil exploration, and biomedical. This work concentrates on the Noise and Vibration (NV) developm...The modeling of porous medium has many applications whose techniques can be used in the fields of automotive, aerospace, oil exploration, and biomedical. This work concentrates on the Noise and Vibration (NV) development of automotive interiors but the ideas can be translated to the aforementioned areas. The NV development requires the setting of NV targets at dif-ferent levels. These targets are then translated to TL (Transmission Loss), IL (Insertion Loss), and Alpha (absorption) performance. Therefore, the ability to manage an efficient product development cycle, that entails analyzing vibro-acoustic environments, hinges on the premise that accurate TL, IL, or Alpha values pertaining to the different multi-layered porous materials can be calculated. Thus, there is a need to have a thorough understanding of the physics behind the energy dissipating mechanism that includes the effects of the fluid meandering through the pores of the material. The goal of this series is to model the acoustic and dynamic coupling via multi-scale and homogenizations techniques, thus subsequently understand where to incorporate the concepts of dynamic tortuosity, viscous and thermal permeability, as well as viscous and thermal lengths. This study will allow the ability to get a better understanding of the underlying processes and also provides tools to create practical concepts for determining the coefficients of the macroscopic equations. This will assist in attaining novel ideas for NV absorption and insulation.展开更多
The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are in...The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated.We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid.A generalized model is presented to describe the special morphology,which fits the experimental result well.It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples.The greater the viscosity is,the shorter the amplitude and the wavelength are.展开更多
基金supported by the Guangxi Science and Technology Plan and Project(Grant Numbers 2021AC19131 and 2022AC21140)Guangxi University of Science and Technology Doctoral Fund Project(Grant Number 20Z40).
文摘In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金supported by National Natural Science Foundation of China (52275551)Shanxi Scholarship Council of China (2021-117)。
文摘One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.
基金financial support for this research was provided by the Program (Grants 11372060, 91216201) of the National Natural Science Foundation of ChinaProgram (LJQ2015026 ) for Excellent Talents at Colleges and Universities in Liaoning Province+3 种基金the Major National Science and Technology Project (2011ZX02403-002)111 project (B14013)Fundamental Research Funds for the Central Universities (DUT14LK30)the China Scholarship Fund
文摘This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries.
文摘In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fatigue damage of metallic materials due to the collective behavior of micro-cracks is quantified by using the generalized self-consistent method. The influence of temperature on fatigue damage of steel structures is quantified by using the previous creep damage model. In addition, the fatigue damage at room temperature and creep damage is coupled in the multi-scale fatigue damage model. The validity of the developed multi-scale damage model is verified by comparing the predicted damage evolution curve with the experimental data. It shows that the developed model is effectiveness. Finally, the fatigue analysis on steel crane runway girders (CRGs) of industrial steel melt shop is performed based on the developed model.
基金financially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘Nb3Sn and other A15 members have been widely applied in nuclear power, nuclear magnetic resonance, and high-energy particle accelerators for their high critical current density (Jc) and upper critical field (Bc2). There have been comprehensive and intensive studies on the applications, the fundamental lattice dynamic and electronic properties, etc., of A15 superconductors. Various reviews on the preparations, structures, and properties have already been written in the last few years. Nevertheless, on account of the large amount of existing facts and views, a coherent view on the relations between the structures and properties has not appeared to unify the facts. This article sketches a multi-scale point of view on the relations between the multi- scale structures and the corresponding properties.
基金supported by the High Value-added Food Technology Development Program in Korea (Grant No. 323002-4)the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry, Republic of Korea。
文摘Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using novel processing technologies: super-heated steaming(SHS), auto-electric cooking(AEC), and pressurized-steam cooking(PSC). Additionally, the effect of two different target water contents(58% and 63%) was also evaluated. The PSC_63% sample had the highest total solids and amylopectin amount in the leachate. The amylopectin amount in the leachate differed significantly based on the targeted water content. Morphological characterization revealed that the swelling of starch and the coated layer on the surface of rice grains were most pronounced in the PSC_63% sample due to the pressure processing. The textural hardness of the AEC_58% sample was much higher than that of the other samples. The PSC_63% sample had the highest textural adhesiveness value, which can be attributed to the highest amylopectin amount in the leachate. Sensory characterization showed that the PSC_63% sample had the highest glossiness, whiteness, moistness, and overall acceptability. The principal component analysis score plots presented substantial differences in the leachate and textural and sensory characteristics of reheated convenience rice among the different processing technologies.
基金supported in part by the General Program Hunan Provincial Natural Science Foundation of 2022,China(2022JJ31022)the Undergraduate Education Reform Project of Hunan Province,China(HNJG-20210532)the National Natural Science Foundation of China(62276276)。
文摘Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods.
基金Project supported by the Natural Science Foundation of Anhui Province, China (Grant No, 12010202035) and the National Natural Science Foundation of China (Grant No. 51272246).
文摘Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl ammonium bromide (CTAB) is employed as a surfactant. After modifying the particles with heptadecafluorodecyltrimethoxy-silane (HTMS), we find that the water contact angle (WCA) of the FeSe2 particles increases by 6.1~ and the water sliding angle (WSA) decreases by 2.5~ respectively, and the diffuse reflectivity decreases 29.4% compared with similar FeSe2 particles synthe- sized by the conventional method. The growth process of the particles is analyzed and a growth scenario is given. Upon altering the PH values of the water, we observe that the superhydrophobic property is maintained quite consistently across a wide PH range of 1-14. Moreover, the modified particles were also found to be superoleophobic. To the best of our knowledge, there is no systematic research on the wettability of FeSe2 particles, so our research provides a reference for other researchers.
基金supported by the National Key Research and Development Program of China under Grants No.2017YFA0701000,No.2018YFF01013001,and No.2020YFA0714001the Natural Science Foundation of China under Grants No.61988102,No.61921002,and No.62071108。
文摘The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature.
基金Supported by the National Natural Science Foundation of China(41602159)
文摘This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining.
基金financially supported by the Department of Education of Liaoning Province of China
文摘Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0μm are composed of lots of nanoparticles of 20 to 30 nm,and have the well-developed interconnected pore structure.In contrast,when Mn doping content is 3 mol%(x=0.03),the Li Fe(0.97)Mn(0.03)PO4/C demonstrates maximum specific surface area of 31.30 m^2/g,more uniform pore size and relatively better electrochemical performance.The initial discharge capacities are 161.59,157.04 and 153.13 m Ah/g at a discharge rate of 0.2,0.5 and 1 C,respectively.Meanwhile,the discharge capacity retentions are~100%after 120 cycles.The improved electrochemical performance should be attributed to higher specific surface,smaller polarization voltage,and a high Li~+diffusion rate due to the micro-nano porous structure and lattice expansion produced by Mn doping.
基金supported by the National Natural Science Foundation of China(41574045,41590862)State Key Laboratory of Earthquake Dynamics(LED2013A06)
文摘The Qilian Orogen Zone(QOZ), located in the north margin of the Tibetan Plateau, is the key area for understanding the deformation and dynamics process of Tibet. Numerous geological and geophysical studies have been carried out on the mechanics of the Tibetan Plateau deformation and uplift; however, the detailed structure and deformation style of the Qilian Orogen Zone have remained uncertain due to poor geophysical data coverage and limited resolution power of inversion algorithms. In this study, we analyze the P-wave velocity structure beneath the Qilian Orogen Zone, obtained by applying multi-scale seismic tomography technique to P-wave arrival time data recorded by regional seismic networks. The seismic tomography algorithm used in this study employs sparsity constraints on the wavelet representation of the velocity model via L1-norm regularization. This algorithm can deal efficiently with uneven-sampled volumes, and can obtain multi-scale images of the velocity model. Our results can be summarized as follows:(1) The crustal velocity structure is strongly inhomogeneous and consistent with the surface geological setting. Significant low-velocity anomalies exist in the crust of northeastern Tibet, and slight high-velocity anomalies exist beneath the Qaidam Basin and Alxa terrane.(2)The Qilian Orogen Zone can be divided into two main parts by the Laji Shan Faults: the northwestern part with a low-velocity feature, and the southeastern part with a high-velocity feature at the upper and middle crust.(3) Our tomographic images suggest that northwestern and southeastern Qilian Orogen Zones have undergone different tectonic processes. In the northwest Qilian Orogen Zone, the deformation and growth of the Northern Tibetan Plateau has extended to the Heli Shan and Beida Shan region by northward overthrusting at the upper crust and thickening in the lower crust. We speculate that in the southeast Qilian Orogen Zone the deformation and growth of the Northern Tibet Plateau were of strike-slip style at the upper crust; in the lower crust, the evidence suggests ductile shear extrusion style and active frontage extension to the Alxa terrane.(4) The multi-scale seismic tomography technique provides multiscale analysis and sparse constraints, which has allowed to us obtain stable, high-resolution results.
基金the financial supports from the National Natural Science Foundation of China(91545202,U1508203)the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(XDB17000000)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe Liaoning Revitalization Talents Program(XLYC1807066)~~
文摘Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)have limited the practical application of rechargeable metal-air batteries.Most of reviews were focused on single functional electrocatalysts while few on bifunctional electrocatalysts.It is indispensable but challenging to design a bifunctional electrocatalyst that is active and stable to the two reactions.Recently,attempts to develop high active bifunctional electrocatalysts for both ORR and OER increase rapidly.Much work is focused on the micro-nano design of advanced structures to improve the performance of bifunctional electrocatalyst.Transition-metal materials,carbon materials and composite materials,and the methods developed to prepare micro-nano structures,such as electrochemical methods,chemical vapor deposition,hydrothermal methods and template methods are reported in literatures.Additionally,many strategies,such as adjustments of electronic structures,oxygen defects,metal-oxygen bonds,interfacial strain,nano composites,heteroatom doping etc.,have been used extensively to design bifunctional electrocatalysts.To well understand the achievements in the recent literatures,this review focuses on the micro-nano structural design of materials,and the related methods and strategies are classed into two groups for the improvement of intrinsic and apparent activities.The fine adjustment of nano structures and an in-depth understanding of the reaction mechanism are also discussed briefly.
基金Supported by the National Key Program for Developing Basic Sciences of China (No. G1999022103) and the National Natural Science Foundation of China (No. 20176059).
文摘This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent-up gas-solid flow. The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of structure parameters with solids concentration, showing the tendency for particles to aggregate to form clusters and for fluid to pass around clusters. The global drag coefficient is resolved into that for the dense phase, for the dilute phase and for the so-called inter-phase, all of which can be obtained from their respective phase-specific structure parameters. The computational results show that the drag coefficients of the different phases are quite different, and the global drag coefficient calculated from the EMMS approach is much lower than that from the correlation of Wen and Yu. The simulation results demonstrate that the EMMS approach can well describe the heterogeneous flow structure, and is very promising for incorporation into the two-fluid model or the discrete particle model as the closure law for drag coefficient.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB720101 and 2012CB720103)the National Natural Science Foundation of China(Grant Nos.11272233,11332006,and 11411130150)
文摘When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.
基金The first author would like to express sincere appreciation for the scholarship provided by China Scholarship Council(No.202006430006)and University of Wollongongfinancially supported by the ACARP Project C28006+1 种基金the National Key Research and Development Program of China(No.2018YFC0808301)the Natural Science Foundation of Beijing Municipality,China(No.8192036)。
文摘Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.
基金supported by professional fund for basic scientific research of Chinese Central-level Public-welfare College/ Institute from Chinese Finance Ministry,and Institute of Crustal Dynamics,China Earthquake Administration (ZDJ2007-1)
文摘In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. Logarithmic power spectrum method is also used to calculate depth of gravity field source. The results show that the crustal structure is very complicated beneath Beijing and its surrounding areas. The crustal density exhibits laterally inhomogeneous. There are three large scale tectonic zones in North China, i.e., WNW-striking Zhangjiakou-Bohai tectonic zone (ZBTZ), NE-striking Taihang piedmont tectonic zone (TPTZ) and Cangxian tectonic zone (CTZ). ZBTZ and TPTZ intersect with each other beneath Beijing area and both of them cut through the lithosphere. The upper and middle crusts consist of many small-scale faults, uplifts and depressions. In the lower crust, these small-scale tectonic units disappear gradually, and they are replaced by large-scale tectonic units. In surrounding regions of Beijing, ZBTZ intersects with several other NE-striking tectonic units, such as Cangxian uplift, Jizhong depression and Shanxi Graben System (SGS). In west of Taihangshan uplift, gravity anomalies in upper and middle crusts are correlated with geological and topographic features on the surface. Compared with the crust, the structure is comparatively simple in uppermost mantle. Earthquakes mainly occurred in upper and middle crusts, especially in transitional regions between high gravity anomaly and low gravity anomaly. Occurrence of large earthquakes may be related to the upwelling of upper mantle and asthenosphere heat flow materials, such as Sanhe earthquake (Ms8.0) and Tangshan earthquake (Ms7.8).
文摘The modeling of porous medium has many applications whose techniques can be used in the fields of automotive, aerospace, oil exploration, and biomedical. This work concentrates on the Noise and Vibration (NV) development of automotive interiors but the ideas can be translated to the aforementioned areas. The NV development requires the setting of NV targets at dif-ferent levels. These targets are then translated to TL (Transmission Loss), IL (Insertion Loss), and Alpha (absorption) performance. Therefore, the ability to manage an efficient product development cycle, that entails analyzing vibro-acoustic environments, hinges on the premise that accurate TL, IL, or Alpha values pertaining to the different multi-layered porous materials can be calculated. Thus, there is a need to have a thorough understanding of the physics behind the energy dissipating mechanism that includes the effects of the fluid meandering through the pores of the material. The goal of this series is to model the acoustic and dynamic coupling via multi-scale and homogenizations techniques, thus subsequently understand where to incorporate the concepts of dynamic tortuosity, viscous and thermal permeability, as well as viscous and thermal lengths. This study will allow the ability to get a better understanding of the underlying processes and also provides tools to create practical concepts for determining the coefficients of the macroscopic equations. This will assist in attaining novel ideas for NV absorption and insulation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10572002,10732010,and 11332002)
文摘The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated.We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid.A generalized model is presented to describe the special morphology,which fits the experimental result well.It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples.The greater the viscosity is,the shorter the amplitude and the wavelength are.