Nowadays, the global climate is constantly being destroyed and the fluctuations in ambient temperature are becoming more frequent. However, conventional single-mode thermal management strategies(heating or cooling) fa...Nowadays, the global climate is constantly being destroyed and the fluctuations in ambient temperature are becoming more frequent. However, conventional single-mode thermal management strategies(heating or cooling) failed to resolve such dynamic temperature changes. Moreover, developing thermal management devices capable of accommodating these temperature variations while remaining simple to fabricate and durable has remained a formidable obstacle. To address these bottlenecks, we design and successfully fabricate a novel dual-mode hierarchical(DMH) composite film featuring a micronanofiber network structure, achieved through a straightforward two-step continuous electrospinning process. In cooling mode, it presents a high solar reflectivity of up to 97.7% and an excellent atmospheric transparent window(ATW) infrared emissivity of up to 98.9%. Noted that this DMH film could realize a cooling of 8.1 ℃ compared to the ambient temperature outdoors. In heating mode, it also exhibits a high solar absorptivity of 94.7% and heats up to 11.9 ℃ higher than black cotton fabric when utilized by individuals. In practical application scenarios, a seamless transition between efficient cooling and heating is achieved by simply flipping the film. More importantly, the DMH film combining the benefits of composites demonstrates portability, durability, and easy-cleaning, promising to achieve large-scale production and use of thermally managed textiles in the future. The energy savings offered by film applications provide a viable solution for the early realization of carbon neutrality.展开更多
Poly(vinyl alcohol)/collagen (PVA/COL) micro-nanofibers were successfully prepared by electrospinning process. Water, green, and non-toxic was used as the solvent. The electrospun mats consisted of micro-nanoscale...Poly(vinyl alcohol)/collagen (PVA/COL) micro-nanofibers were successfully prepared by electrospinning process. Water, green, and non-toxic was used as the solvent. The electrospun mats consisted of micro-nanoscale fibers with mean diameter ranging from approximately 363 nm to 179 nm. It was observed that the mean diameters of PVA/COL electrospun fibers decreased with increasing collagen content. The effects of PVA/COL blending ratio on the rheological behavior of PVA/COL blended solutions were investigated by rotate rheometer. It was found that PVA/COL blended solutions behaved as Non-Newtonian fluids. With increasing collagen content, the Non-Newtonian index (n) of PVA/COL blended solutions decreased. Meanwhile, a linear relationship was found between the Non-Newtonian index (n) and the mean diameters of the PVA/COL micro- nanofibers. The chemical structures of PVA/COL electrospun fibers were also characterized by FTIR.展开更多
Nerve guidance conduits(NGCs)have attracted much attention due to their great necessity and applicability in clinical use for the peripheral nerve repair.Great efforts in recent years have been devoted to the developm...Nerve guidance conduits(NGCs)have attracted much attention due to their great necessity and applicability in clinical use for the peripheral nerve repair.Great efforts in recent years have been devoted to the development of high-performance NGCs using various materials and strategies.The present review provides a comprehensive overview of progress in the material innovation,structural design,advanced engineering technologies and multi functionalization of state-of-the-art nerve guidance conduits NGCs.Abundant advanced engineering technologies including extrusion-based system,laser-based system,and novel textile forming techniques in terms of weaving,knitting,braiding,and electrospinning techniques were also analyzed in detail.Findings arising from this review indicate that the structural mimetic NGCs combined with natural and synthetic materials using advanced manufacturing technologies can make full use of their complementary advantages,acquiring better biomechanical properties,chemical stability and biocompatibility.Finally,the existing challenges and future opportunities of NGCs were put forward aiming for further research and applications of NGCs.展开更多
基金financially Fundamental Research Funds for the Central Universities (2232021G-04 and 2232020D-20)Student Innovation Fund of Donghua University (GSIF-DH-M-2021003)。
文摘Nowadays, the global climate is constantly being destroyed and the fluctuations in ambient temperature are becoming more frequent. However, conventional single-mode thermal management strategies(heating or cooling) failed to resolve such dynamic temperature changes. Moreover, developing thermal management devices capable of accommodating these temperature variations while remaining simple to fabricate and durable has remained a formidable obstacle. To address these bottlenecks, we design and successfully fabricate a novel dual-mode hierarchical(DMH) composite film featuring a micronanofiber network structure, achieved through a straightforward two-step continuous electrospinning process. In cooling mode, it presents a high solar reflectivity of up to 97.7% and an excellent atmospheric transparent window(ATW) infrared emissivity of up to 98.9%. Noted that this DMH film could realize a cooling of 8.1 ℃ compared to the ambient temperature outdoors. In heating mode, it also exhibits a high solar absorptivity of 94.7% and heats up to 11.9 ℃ higher than black cotton fabric when utilized by individuals. In practical application scenarios, a seamless transition between efficient cooling and heating is achieved by simply flipping the film. More importantly, the DMH film combining the benefits of composites demonstrates portability, durability, and easy-cleaning, promising to achieve large-scale production and use of thermally managed textiles in the future. The energy savings offered by film applications provide a viable solution for the early realization of carbon neutrality.
基金Funded by the National Natural Science Foundation of China(Nos.21076199,51373158)the Department of Science and Technology of Henan Province(No.124300510)
文摘Poly(vinyl alcohol)/collagen (PVA/COL) micro-nanofibers were successfully prepared by electrospinning process. Water, green, and non-toxic was used as the solvent. The electrospun mats consisted of micro-nanoscale fibers with mean diameter ranging from approximately 363 nm to 179 nm. It was observed that the mean diameters of PVA/COL electrospun fibers decreased with increasing collagen content. The effects of PVA/COL blending ratio on the rheological behavior of PVA/COL blended solutions were investigated by rotate rheometer. It was found that PVA/COL blended solutions behaved as Non-Newtonian fluids. With increasing collagen content, the Non-Newtonian index (n) of PVA/COL blended solutions decreased. Meanwhile, a linear relationship was found between the Non-Newtonian index (n) and the mean diameters of the PVA/COL micro- nanofibers. The chemical structures of PVA/COL electrospun fibers were also characterized by FTIR.
基金financially supported by National Key R&D Program of China(2021YFE0111100 and 2019YFE0117700)the“Top six talent peaks”program of Jiangsu(GDZB-035)and Science and Technology Project of Nantong(JC2020082)+2 种基金the support of China National Textile and Apparel Council(J202002)joint scientific research project of Sino-foreign cooperative education platform of Jiangsu Higher Education Institutions(5011500720)projects with numbers FZ20190257,XJFZ/2021/7 and 2021fx010104.
文摘Nerve guidance conduits(NGCs)have attracted much attention due to their great necessity and applicability in clinical use for the peripheral nerve repair.Great efforts in recent years have been devoted to the development of high-performance NGCs using various materials and strategies.The present review provides a comprehensive overview of progress in the material innovation,structural design,advanced engineering technologies and multi functionalization of state-of-the-art nerve guidance conduits NGCs.Abundant advanced engineering technologies including extrusion-based system,laser-based system,and novel textile forming techniques in terms of weaving,knitting,braiding,and electrospinning techniques were also analyzed in detail.Findings arising from this review indicate that the structural mimetic NGCs combined with natural and synthetic materials using advanced manufacturing technologies can make full use of their complementary advantages,acquiring better biomechanical properties,chemical stability and biocompatibility.Finally,the existing challenges and future opportunities of NGCs were put forward aiming for further research and applications of NGCs.