Tinnitus is a heterogeneous hearing disorder with no cure at present,but some treatments,such as a combination of counselling and sound therapy,can alleviate the discomfort it causes.The sound therapy efficiency depen...Tinnitus is a heterogeneous hearing disorder with no cure at present,but some treatments,such as a combination of counselling and sound therapy,can alleviate the discomfort it causes.The sound therapy efficiency depends on both the type of sound stimulus and the time of exposure.This study describes the fundamentals of a personalized sound therapy that stimulates the auditory system with either continuous or sequential sounds whose spectra are adjusted to the hearing levels of the participants.This sound therapy is called Enriched Acoustic Environment and is assessed in a sample of 137 participants with tinnitus.Tinnitus-related distress relief was clinically relevant and statistically significant for 90%of these patients.This was quantified as a mean decrease of 24.3 points on the Tinnitus Handicap Inventory.31%of participants were treated with sequential stimuli and achieved greater relief of distress(29.4 points on their Tinnitus Handicap Inventory score)compared to those treated with continuous sound(69%).According to these results,sequential sound seems to be optimal compared to continuous sound.展开更多
Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postu...Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postural instability,as a result of the progressive loss of nigrostriatal dopaminergic neurons.In addition to this neuronal cell loss,Parkinson’s disease is characterized by the accumulation of intracellular protein aggregates,Lewy bodies and Lewy neurites,composed primarily of the proteinα-synuclein.Although it was first described almost 200 years ago,there are no disease-modifying drugs to treat patients with Parkinson’s disease.In addition to conventional therapies,non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders.Among such strategies,environmental enrichment,comprising physical exercise,cognitive stimulus,and social interactions,has been assessed in preclinical models of Parkinson’s disease.Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression,enhancing the expression of neurotrophic factors and modulating neurotransmission.In this review article,we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson’s disease,highlighting its influence on the dopaminergic,cholinergic,glutamatergic and GABAergic systems,as well as the involvement of neurotrophic factors.We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson’s disease,highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.展开更多
Environmental enrichment attenuates hippocampal synaptic injury induced by prenatal stress in offspring. However, the influence of hippocampal synaptic changes and regional differences in prenatal stress remains poorl...Environmental enrichment attenuates hippocampal synaptic injury induced by prenatal stress in offspring. However, the influence of hippocampal synaptic changes and regional differences in prenatal stress remains poorly understood. The present study induced stress in Sprague Dawley rats, which were at gestational age 13-19 days. Following weaning, the offspring were raised in an enriched environment to establish models of stress + enriched environment. Dendritic spine density and synaptophysin expression were detected in hippocampal neurons using Golgi staining and western blot analysis, respectively. Results showed that enriched environment increased dendritic spine density of apical dendrites in CA1 pyramidal cells and basal dendrites of granular cells in the outer layer of the dentate gyrus. In addition, hippocampal synaptophysin expression increased and the effects of prenatal stress on neuronal dendritic spines were reversed in adolescence.展开更多
Early Cambrian shale is an important petroleum source rock around the world.Because of little drilling data and poor seismic data,until recently,organic matter enrichment of the Lower Cambrian Yuertusi and Xishanbulak...Early Cambrian shale is an important petroleum source rock around the world.Because of little drilling data and poor seismic data,until recently,organic matter enrichment of the Lower Cambrian Yuertusi and Xishanbulake formations shale is still an enigma in the Tarim Basin,northwestern China.Total organic carbon(TOC),major and trace element data of Cambrian shale samples from five boreholes have been analyzed to decipher the mechanism of the organic matter enrichment.The results show that the shales deposited in the western restricted intraplatform have much higher TOC contents(3.2%-19.8%,on average 11.0%)than those from the eastern basin(2.2%-10.2%,on average 4.5%).The paleoproductivity proxies(Ba,Ba/Al,P/Al)in the western restricted platform are much higher than those in the eastern basin.The trace element indicators such as V/Cr,Ni/Co,Mo-TOC and Mo_(EF)-U_(EF)suggest an anoxic environment across the basin,but a more restricted environment in the western intraplatform.The paleoproductivity rather than anoxic condition and hydrothermal activity are concluded to have resulted in the differentiation of the organic matter enrichment from the western intraplatform to eastern basin in the early Cambrian shales;the restricted environment was favorable for paleoproductivity and preservation of organic matter.展开更多
Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an ...Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia;however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion(pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16–20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions(based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities(based on the spatial learning scores from the Morris water maze test 16–19 days after operation), and memory abilities(based on the memory scores of the Morris water maze test 20 days after operation) of the enriched environment group improved significantly. In addition, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex increased in the enriched environment group compared with those in the standard housing condition group. Furthermore, the Pearson correlation coefficient showed that neurobehavioral functions were positively associated with the expression levels of FDNC5 and BDNF(r = 0.587 and r = 0.840, respectively). These findings suggest that an enriched environment upregulates FDNC5 protein expression in the ipsilateral cerebral cortex after cerebral ischemia, which then activates BDNF protein expression, improving neurological function. BDNF protein expression was positively correlated with improved neurological function. The experimental protocols were approved by the Institutional Animal Care and Use Committee of Fudan University, China(approval Nos. 20160858 A232, 20160860 A234) on February 24, 2016.展开更多
In this study,we examined 3-month-old female mice from the senescence-accelerated prone mouse 8 strain and age-matched homologous normal aging female mice from the senescence accelerated-resistant mouse 1 strain.Mice ...In this study,we examined 3-month-old female mice from the senescence-accelerated prone mouse 8 strain and age-matched homologous normal aging female mice from the senescence accelerated-resistant mouse 1 strain.Mice from each strain were housed in an enriched environment(including a platform,running wheels,tunnel,and some toys)or a standard environment for 3 months.The mice housed in the enriched environment exhibited shorter escape latencies and a greater percentage of time in the target quadrant in the Morris water maze test,and they exhibited reduced errors and longer latencies in step-down avoidance experiments compared with mice housed in the standard environment.Correspondently,brain-derived neurotrophic factor mRNA and protein ex- pression in the hippocampus was significantly higher in mice housed in the enriched environment compared with those housed in the standard environment,and the level of hippocampal brain-derived neurotrophic factor protein was positively correlated with the learning and memory abilities of mice from the senescence-accelerated prone mouse 8 strain.These results suggest that an enriched environment improved cognitive performance in mice form the senescence-accelerated prone mouse 8 strain by increasing brain-derived neurotrophic factor expression in the hippocampus.展开更多
Cambrian shales in China and elsewhere contain abundant oil and gas resources.However,due to its deep burial and limited outcrop,there has been relatively little research conducted on it.The Cambrian shale of the Tado...Cambrian shales in China and elsewhere contain abundant oil and gas resources.However,due to its deep burial and limited outcrop,there has been relatively little research conducted on it.The Cambrian shale of the Tadong low uplift in the Tarim Basin of western China,specifically the Xidashan-Xishanbulake Formation(Fm.)and overlying Moheershan Fm.provide a case study through the use of organic petrology,mineralogy,organic and elemental geochemistry,with the aim of analyzing and exploring the hydrocarbon generation potential(PG)and organic matter(OM)enrichment mechanisms within these shale formations.The results indicate that:(1)the Cambrian shale of the Tadong low uplift exhibits relatively dispersed OM that consists of vitrinite-like macerals and solid bitumen.These formations have a higher content of quartz and are primarily composed of silica-based lithology;(2)shale samples from the Xidashan-Xishanbulake and Moheershan formations demonstrate high total organic carbon(TOC)and low pyrolytic hydrocarbon content(S_(2))content.The OM is predominantly typeⅠand typeⅡkerogens,indicating a high level of maturation in the wet gas period.These shales have undergone extensive hydrocarbon generation,showing characteristics of relatively poor PG;(3)the sedimentary environments of the Xidashan-Xishanbulake and Moheershan formations in the Tadong low uplift are similar.They were deposited in warm and humid climatic conditions,in oxygen-deficient environments,with stable terrigenous inputs,high paleoproductivity,high paleosalinity,weak water-holding capacity,and no significant hydrothermal activity;and(4)the relationship between TOC and the paleoproductivity parameter(P/Ti)is most significant in the Lower Cambrian Xidashan-Xishanbulake Fm.,whereas correlation with other indicators is not evident.This suggests a productivity-driven OM enrichment model,where input of landderived material was relatively small during the Middle Cambrian,and the ancient water exhibited lower salinity.A comprehensive pattern was formed under the combined control of paleoproductivity and preservation conditions.This study provides valuable guidance for oil and gas exploration in the Tarim Basin.展开更多
An enriched environment is used as a behavio ral intervention therapy that applies sensory,motor,and social stimulation,and has been used in basic and clinical research of va rious neurological diseases.In this study,...An enriched environment is used as a behavio ral intervention therapy that applies sensory,motor,and social stimulation,and has been used in basic and clinical research of va rious neurological diseases.In this study,we established mouse models of photothrombotic stroke and,24 hours later,raised them in a standard,enriched,or isolated environment for 4 weeks.Compared with the mice raised in a standard environment,the cognitive function of mice raised in an enriched environment was better and the pathological damage in the hippocampal CA1 region was remarkably alleviated.Furthermore,protein expression levels of tumor necrosis factor receptor-associated factor 6,nuclear factorκB p65,interleukin-6,and tumor necrosis factorα,and the mRNA expression level of tumor necrosis factor receptor-associated factor 6 were greatly lower,while the expression level of miR-146a-5p was higher.Compared with the mice raised in a standard environment,changes in these indices in mice raised in an isolated environment were opposite to mice raised in an enriched environment.These findings suggest that different living environments affect the hippocampal inflammatory response and cognitive function in a mouse model of stro ke.An enriched environment can improve cognitive function following stroke through up-regulation of miR-146a-5p expression and a reduction in the inflammatory response.展开更多
Epilepsy is a neurodegenerative disease that interrupts the normal electrical activity of the brain and promotes abnormal wiring in this organ.Epileptic seizures are often associated with significant changes in the fu...Epilepsy is a neurodegenerative disease that interrupts the normal electrical activity of the brain and promotes abnormal wiring in this organ.Epileptic seizures are often associated with significant changes in the functioning of the autonomic nervous system(ANS).展开更多
Glaucoma is one of the world’s most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons.Despite glaucoma’s most accepted risk factor is increased intraocular pre...Glaucoma is one of the world’s most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons.Despite glaucoma’s most accepted risk factor is increased intraocular pressure(IOP),the mechanisms behind the disease have not been fully elucidated.To date,IOP lowering remains the gold standard;however,glaucoma patients may still lose vision regardless of effective IOP management.Therefore,the exclusive IOP control apparently is not enough to stop the disease progression,and developing new resources to protect the retina and optic nerve against glaucoma is a goal of vast clinical importance.Besides pharmacological treatments,environmental conditions have been shown to prevent neurodegeneration in the central nervous system.In this review,we discuss current concepts on key pathogenic mechanisms involved in glaucoma,the effect of enriched environment on these mechanisms in different experimental models,as well as recent evidence supporting the preventive and therapeutic effect of enriched environment exposure against experimental glaucomatous damage.Finally,we postulate that stimulating vision may become a non-invasive and rehabilitative therapy that could be eventually translated to the human disease,preventing glaucoma-induced terrible sequelae resulting in permanent visual disability.展开更多
Alzheimer’s disease (AD) is a common neurodegenerative disease, its main clinical symptoms are the progressive decline of cognitive and memory functions. Enriched Environment (EE) achieves the goal of improving brain...Alzheimer’s disease (AD) is a common neurodegenerative disease, its main clinical symptoms are the progressive decline of cognitive and memory functions. Enriched Environment (EE) achieves the goal of improving brain cognitive reserve by enhancing the multi-directional stimulation on movement, sensory and cognitive systems of animals. And EE can regulate the levels of various trophic factors in the brain, promote synaptic regeneration and enhance neural plasticity to reduce the loss of neurons induced by inflammation. At present, there is still no effective treatment for AD and the clinical intervention drug is expensive. So it is essential to actively explore non-drug treatment. This review will explain the effects of EE on learning ability, memory ability and mental behavior in AD, and provide a new direction for the treatment and rehabilitation of AD.展开更多
The purpose of this study was to evaluate the roles of different housing environments in neurological function, cerebral metabolism, cerebral infarction and neuron apoptosis after focal cerebral ischemia. Twenty-eight...The purpose of this study was to evaluate the roles of different housing environments in neurological function, cerebral metabolism, cerebral infarction and neuron apoptosis after focal cerebral ischemia. Twenty-eight Sprague-Dawley rats were divided into control group (CG) and cerebral ischemia group, and the latter was further divided into subgroups of different housing conditions: standard environment (SE) subgroup, individual living environment (IE) subgroup, and enriched environment (EE) subgroup. Focal cerebral ischemia was induced by the middle cerebral artery occlusion (MCAO). Beam walking test was used to quantify the changes of overall motor function. Cerebral infarction and cerebral metabolism were studied by in vivo magnetic resonance imaging and 1H-magnetic resonance spectra, respectively. Neuron necrosis and apoptosis were detected by hematoxylin-eosin and TUNEL staining methods, respectively. The results showed that performance on the beam-walk test was improved in EE subgroup when compared to SE subgroup and IE subgroup. Cerebral infarct volume in IE subgroup was significantly larger than that in SE subgroup (P〈0.05) and EE subgroup (P〈0.05) on day 14 after MCAO. NAA/Cr and Cho/Cr ratios were lower in MCAO groups under different housing conditions as compared to those in CG (P〈0.05). NAA/Cr ratio was lower in IE subgroup (P〈0.05) and higher in EE subgroup (P〈0.05) than that in SE subgroup. NAA/ Cr ratio in EE was significantly higher than that in IE subgroup (P〈0.05). Cho/Cr ratio was decreased in MCAO groups as compared to that in CG (P〈0.05). A significant decrease in normal neurons in cerebral cortex was observed in MCAO groups as compared to CG (P〈0.05). The amount of normal neurons was less in IE subgroup (P〈0.05), and more in EE subgroup (P〈0.05) than that in SE subgroup after MCAO. The amotmt of normal neurons in EE subgroup was significantly more than that in IE subgroup after MCAO (P〈0.05). The ratio of TUNEL-positive neurons in EE was significantly lower than that in SE subgroup (P〈0.05) and IE subgroup (P〈0.05). Correlation analysis showed that the beam walking test was negatively correlated with NAA/Cr ratio (P〈0.05). Cerebral infarct volume was negatively correlated with both NAA/Cr ratio (P〈0.01) and Cho/Cr ratio (P〈0.01). The amount of normal cortical neurons was positively correlated with both NAA/Cr ratio (P〈0.0I) and Cho/Cr ratio (P〈0.05). The TUNEL-positive neurons showed a negative correlation with both NAA/Cr ratio (P〈0.01) and Cho/Cr ratio (P〈0.01). This study goes further to show that EE may improve neurological functional deficit and cerebral metabolism, decrease cerebral infarct volume, neuron necrosis and apoptosis, while IE may aggravate brain damage after MCAO.展开更多
There is a growing acceptance of the vital role patient centered design plays in shaping the environment. Art can be of use in every area of health care. It is within the power of each person to share and interpret ex...There is a growing acceptance of the vital role patient centered design plays in shaping the environment. Art can be of use in every area of health care. It is within the power of each person to share and interpret experience by means of the arts, by viewing the work of others, and by using feelings and imagination. Health professionals [n = 24 of a total of n = 35], answered the Wheel Questionnaire test instrument. It measures structure, motivation/engagement, and degree of emotional investment in a situation. Participants were requested to describe, in their own words, their perception of the enrichment of the ward interiordesign and the double-sided photos with a short poetic text, and the photo-book placed at each patient room. The results demonstrate that participants are motivated, structured and emotionally engaged when describing the new enrichment. The domains and themes are: Social interaction domain;rising thoughts and conversations. Comfort domain;atmosphere. Aesthetic do main;enrichment of the working environment. It could be concluded that the surgical ward environmental enrichment stimulated conversations between health professionals and between health professionals and patients and should be regarded as an important aspect in hospital planning.展开更多
Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulat...Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulating various amyloid-βoligomers in the brain,influenced by complex genetic and environmental factors.The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer’s disease are believed to primarily result from synaptic dysfunction.Throughout life,environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders.These changes,known as epigenetic modifications,also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity.In this context,we highlight recent advances in understanding the roles played by key components of the epigenetic machinery,specifically DNA methylation,histone modification,and microRNAs,in the development of Alzheimer’s disease,synaptic function,and activity-dependent synaptic plasticity.Moreover,we explore various strategies,including enriched environments,exposure to non-invasive brain stimulation,and the use of pharmacological agents,aimed at improving synaptic function and enhancing long-term potentiation,a process integral to epigenetic mechanisms.Lastly,we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer’s disease.We suggest that addressing Alzheimer’s disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug.展开更多
The three-phase Enriched Environment(EE)paradigm has been shown to promote post-stroke functional improvement,but the neuronal mechanisms are still unclear.In this study,we applied a multimodal neuroimaging protocol c...The three-phase Enriched Environment(EE)paradigm has been shown to promote post-stroke functional improvement,but the neuronal mechanisms are still unclear.In this study,we applied a multimodal neuroimaging protocol combining magnetic resonance imaging(MRI)and positron emission tomography(PET)to examine the effects of post-ischemic EE treatment on structural and functional neuroplasticity in the bilateral sensorimotor cortex.Rats were subjected to permanent middle cerebral artery occlusion.The motor function of the rats was examined using the DigiGait test.MRI was applied to investigate the EE-induced structural modifications of the bilateral sensorimotor cortex.[^(18)F]-fluorodeoxyglucose PET was used to detect glucose metabolism.Blood oxygen level-dependent(BOLD)-functional MRI(fMRI)was used to identify the regional brain activity and functional connectivity(FC).In addition,the expression of neuroplasticity-related signaling pathways including neurotrophic factors(BDNF/CREB),axonal guidance proteins(Robo1/Slit2),and axonal growth-inhibitory proteins(NogoA/NgR)as well as downstream proteins(RhoA/ROCK)in the bilateral sensorimotor cortex were measured by Western blots.Our results showed the three-phase EE improved the walking ability.Structural T2 mapping imaging and diffusion tensor imaging demonstrated that EE benefited structure integrity in the bilateral sensorimotor cortex.PET-MRI fused images showed improved glucose metabolism in the corresponding regions after EE intervention.Specifically,the BOLD-based amplitude of low-frequency fluctuations showed that EE increased spontaneous activity in the bilateral motor cortex and ipsilateral sensory cortex.In addition,FC results showed increased sensorimotor connectivity in the ipsilateral hemisphere and increased interhemispheric motor cortical connectivity and motor cortical-thalamic connectivity following EE intervention.In addition,a strong correlation was found between increased functional connectivity and improved motor performance of limbs.Specifically,EE regulated the expression of neuroplasticity-related signaling,involving BDNF/CREB,Slit2/Robo1,as well as the axonal growth–inhibitory pathways Nogo-A/Nogo receptor and RhoA/ROCK in the bilateral sensorimotor cortex.Our results indicated that the three-phase enriched environment paradigm enhances neuronal plasticity of the bilateral sensorimotor cortex and consequently ameliorates post-stroke gait deficits.These findings might provide some new clues for the development of EE and thus facilitate the clinical translation of EE.展开更多
The cultivation technology of selenium-containing plant Pueraria thomsonii Benth was summarized from the producing area conditions,variety selection,field management and other aspects,which is of great significance fo...The cultivation technology of selenium-containing plant Pueraria thomsonii Benth was summarized from the producing area conditions,variety selection,field management and other aspects,which is of great significance for increasing the selenium concentration in humans or animals.展开更多
文摘Tinnitus is a heterogeneous hearing disorder with no cure at present,but some treatments,such as a combination of counselling and sound therapy,can alleviate the discomfort it causes.The sound therapy efficiency depends on both the type of sound stimulus and the time of exposure.This study describes the fundamentals of a personalized sound therapy that stimulates the auditory system with either continuous or sequential sounds whose spectra are adjusted to the hearing levels of the participants.This sound therapy is called Enriched Acoustic Environment and is assessed in a sample of 137 participants with tinnitus.Tinnitus-related distress relief was clinically relevant and statistically significant for 90%of these patients.This was quantified as a mean decrease of 24.3 points on the Tinnitus Handicap Inventory.31%of participants were treated with sequential stimuli and achieved greater relief of distress(29.4 points on their Tinnitus Handicap Inventory score)compared to those treated with continuous sound(69%).According to these results,sequential sound seems to be optimal compared to continuous sound.
文摘Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postural instability,as a result of the progressive loss of nigrostriatal dopaminergic neurons.In addition to this neuronal cell loss,Parkinson’s disease is characterized by the accumulation of intracellular protein aggregates,Lewy bodies and Lewy neurites,composed primarily of the proteinα-synuclein.Although it was first described almost 200 years ago,there are no disease-modifying drugs to treat patients with Parkinson’s disease.In addition to conventional therapies,non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders.Among such strategies,environmental enrichment,comprising physical exercise,cognitive stimulus,and social interactions,has been assessed in preclinical models of Parkinson’s disease.Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression,enhancing the expression of neurotrophic factors and modulating neurotransmission.In this review article,we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson’s disease,highlighting its influence on the dopaminergic,cholinergic,glutamatergic and GABAergic systems,as well as the involvement of neurotrophic factors.We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson’s disease,highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.
基金Supported by the National Natural Science Foundation for the Youth, No. 30800591the Scientific Research Program of Hunan Provincial High Institutes, No. 09C631
文摘Environmental enrichment attenuates hippocampal synaptic injury induced by prenatal stress in offspring. However, the influence of hippocampal synaptic changes and regional differences in prenatal stress remains poorly understood. The present study induced stress in Sprague Dawley rats, which were at gestational age 13-19 days. Following weaning, the offspring were raised in an enriched environment to establish models of stress + enriched environment. Dendritic spine density and synaptophysin expression were detected in hippocampal neurons using Golgi staining and western blot analysis, respectively. Results showed that enriched environment increased dendritic spine density of apical dendrites in CA1 pyramidal cells and basal dendrites of granular cells in the outer layer of the dentate gyrus. In addition, hippocampal synaptophysin expression increased and the effects of prenatal stress on neuronal dendritic spines were reversed in adolescence.
基金partly supported by the National Natural Science Foundation of China(Grant No.42241206,91955204)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.4224100017,2020CX010101)。
文摘Early Cambrian shale is an important petroleum source rock around the world.Because of little drilling data and poor seismic data,until recently,organic matter enrichment of the Lower Cambrian Yuertusi and Xishanbulake formations shale is still an enigma in the Tarim Basin,northwestern China.Total organic carbon(TOC),major and trace element data of Cambrian shale samples from five boreholes have been analyzed to decipher the mechanism of the organic matter enrichment.The results show that the shales deposited in the western restricted intraplatform have much higher TOC contents(3.2%-19.8%,on average 11.0%)than those from the eastern basin(2.2%-10.2%,on average 4.5%).The paleoproductivity proxies(Ba,Ba/Al,P/Al)in the western restricted platform are much higher than those in the eastern basin.The trace element indicators such as V/Cr,Ni/Co,Mo-TOC and Mo_(EF)-U_(EF)suggest an anoxic environment across the basin,but a more restricted environment in the western intraplatform.The paleoproductivity rather than anoxic condition and hydrothermal activity are concluded to have resulted in the differentiation of the organic matter enrichment from the western intraplatform to eastern basin in the early Cambrian shales;the restricted environment was favorable for paleoproductivity and preservation of organic matter.
基金supported by the National Natural Science Foundation of China,Nos.81601961(to KWY),81672242(to YW)the Key Construction Projects of Shanghai Health and Family Planning on Weak Discipline,China,No.2015ZB0401(to YW)
文摘Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia;however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion(pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16–20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions(based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities(based on the spatial learning scores from the Morris water maze test 16–19 days after operation), and memory abilities(based on the memory scores of the Morris water maze test 20 days after operation) of the enriched environment group improved significantly. In addition, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex increased in the enriched environment group compared with those in the standard housing condition group. Furthermore, the Pearson correlation coefficient showed that neurobehavioral functions were positively associated with the expression levels of FDNC5 and BDNF(r = 0.587 and r = 0.840, respectively). These findings suggest that an enriched environment upregulates FDNC5 protein expression in the ipsilateral cerebral cortex after cerebral ischemia, which then activates BDNF protein expression, improving neurological function. BDNF protein expression was positively correlated with improved neurological function. The experimental protocols were approved by the Institutional Animal Care and Use Committee of Fudan University, China(approval Nos. 20160858 A232, 20160860 A234) on February 24, 2016.
基金supported by the Program of Health Department of Hebei Province,No.20090338the Natural Science Foundation of Hebei Province,No.C2009001242Funding Project for Introduced Abroad Study Personnel of Hebei Province
文摘In this study,we examined 3-month-old female mice from the senescence-accelerated prone mouse 8 strain and age-matched homologous normal aging female mice from the senescence accelerated-resistant mouse 1 strain.Mice from each strain were housed in an enriched environment(including a platform,running wheels,tunnel,and some toys)or a standard environment for 3 months.The mice housed in the enriched environment exhibited shorter escape latencies and a greater percentage of time in the target quadrant in the Morris water maze test,and they exhibited reduced errors and longer latencies in step-down avoidance experiments compared with mice housed in the standard environment.Correspondently,brain-derived neurotrophic factor mRNA and protein ex- pression in the hippocampus was significantly higher in mice housed in the enriched environment compared with those housed in the standard environment,and the level of hippocampal brain-derived neurotrophic factor protein was positively correlated with the learning and memory abilities of mice from the senescence-accelerated prone mouse 8 strain.These results suggest that an enriched environment improved cognitive performance in mice form the senescence-accelerated prone mouse 8 strain by increasing brain-derived neurotrophic factor expression in the hippocampus.
基金supported by the National Major Science and Technology Project of China(Grant Nos.2016ZX05066001-0022017ZX05064-003-001+3 种基金2017ZX05035-02 and 2016ZX05034-001-05)the Innovative Research Group Project of the National Natural Science Foundation of China(Grant Nos.4187213542072151 and 42372144)the Project of Education Department of Liaoning Province(Grant No.LJKMZ20220744)。
文摘Cambrian shales in China and elsewhere contain abundant oil and gas resources.However,due to its deep burial and limited outcrop,there has been relatively little research conducted on it.The Cambrian shale of the Tadong low uplift in the Tarim Basin of western China,specifically the Xidashan-Xishanbulake Formation(Fm.)and overlying Moheershan Fm.provide a case study through the use of organic petrology,mineralogy,organic and elemental geochemistry,with the aim of analyzing and exploring the hydrocarbon generation potential(PG)and organic matter(OM)enrichment mechanisms within these shale formations.The results indicate that:(1)the Cambrian shale of the Tadong low uplift exhibits relatively dispersed OM that consists of vitrinite-like macerals and solid bitumen.These formations have a higher content of quartz and are primarily composed of silica-based lithology;(2)shale samples from the Xidashan-Xishanbulake and Moheershan formations demonstrate high total organic carbon(TOC)and low pyrolytic hydrocarbon content(S_(2))content.The OM is predominantly typeⅠand typeⅡkerogens,indicating a high level of maturation in the wet gas period.These shales have undergone extensive hydrocarbon generation,showing characteristics of relatively poor PG;(3)the sedimentary environments of the Xidashan-Xishanbulake and Moheershan formations in the Tadong low uplift are similar.They were deposited in warm and humid climatic conditions,in oxygen-deficient environments,with stable terrigenous inputs,high paleoproductivity,high paleosalinity,weak water-holding capacity,and no significant hydrothermal activity;and(4)the relationship between TOC and the paleoproductivity parameter(P/Ti)is most significant in the Lower Cambrian Xidashan-Xishanbulake Fm.,whereas correlation with other indicators is not evident.This suggests a productivity-driven OM enrichment model,where input of landderived material was relatively small during the Middle Cambrian,and the ancient water exhibited lower salinity.A comprehensive pattern was formed under the combined control of paleoproductivity and preservation conditions.This study provides valuable guidance for oil and gas exploration in the Tarim Basin.
基金financially the National Natural Science Foundation of China,No.82072533the China Postdoctoral Science Foundation,No.2017M621675+1 种基金Huxin Foundation of Jiangsu Key Laboratory of Zoonosis of China,No.HX2003Yangzhou Science and Technology Development Plan Project of China,No.YZ2020201(all to XW)。
文摘An enriched environment is used as a behavio ral intervention therapy that applies sensory,motor,and social stimulation,and has been used in basic and clinical research of va rious neurological diseases.In this study,we established mouse models of photothrombotic stroke and,24 hours later,raised them in a standard,enriched,or isolated environment for 4 weeks.Compared with the mice raised in a standard environment,the cognitive function of mice raised in an enriched environment was better and the pathological damage in the hippocampal CA1 region was remarkably alleviated.Furthermore,protein expression levels of tumor necrosis factor receptor-associated factor 6,nuclear factorκB p65,interleukin-6,and tumor necrosis factorα,and the mRNA expression level of tumor necrosis factor receptor-associated factor 6 were greatly lower,while the expression level of miR-146a-5p was higher.Compared with the mice raised in a standard environment,changes in these indices in mice raised in an isolated environment were opposite to mice raised in an enriched environment.These findings suggest that different living environments affect the hippocampal inflammatory response and cognitive function in a mouse model of stro ke.An enriched environment can improve cognitive function following stroke through up-regulation of miR-146a-5p expression and a reduction in the inflammatory response.
基金supported by the Research Fund of the Erciyes University(TSD-09-1039)
文摘Epilepsy is a neurodegenerative disease that interrupts the normal electrical activity of the brain and promotes abnormal wiring in this organ.Epileptic seizures are often associated with significant changes in the functioning of the autonomic nervous system(ANS).
基金supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica,Nos.PICT 1563 and PICT 2731(to RER)The University of Buenos Aires,No.20020100100678(to RER)Consejo Nacional de Investigaciones Científicas y Técnicas,No.PIP 0707(to RER),Argentina。
文摘Glaucoma is one of the world’s most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons.Despite glaucoma’s most accepted risk factor is increased intraocular pressure(IOP),the mechanisms behind the disease have not been fully elucidated.To date,IOP lowering remains the gold standard;however,glaucoma patients may still lose vision regardless of effective IOP management.Therefore,the exclusive IOP control apparently is not enough to stop the disease progression,and developing new resources to protect the retina and optic nerve against glaucoma is a goal of vast clinical importance.Besides pharmacological treatments,environmental conditions have been shown to prevent neurodegeneration in the central nervous system.In this review,we discuss current concepts on key pathogenic mechanisms involved in glaucoma,the effect of enriched environment on these mechanisms in different experimental models,as well as recent evidence supporting the preventive and therapeutic effect of enriched environment exposure against experimental glaucomatous damage.Finally,we postulate that stimulating vision may become a non-invasive and rehabilitative therapy that could be eventually translated to the human disease,preventing glaucoma-induced terrible sequelae resulting in permanent visual disability.
文摘Alzheimer’s disease (AD) is a common neurodegenerative disease, its main clinical symptoms are the progressive decline of cognitive and memory functions. Enriched Environment (EE) achieves the goal of improving brain cognitive reserve by enhancing the multi-directional stimulation on movement, sensory and cognitive systems of animals. And EE can regulate the levels of various trophic factors in the brain, promote synaptic regeneration and enhance neural plasticity to reduce the loss of neurons induced by inflammation. At present, there is still no effective treatment for AD and the clinical intervention drug is expensive. So it is essential to actively explore non-drug treatment. This review will explain the effects of EE on learning ability, memory ability and mental behavior in AD, and provide a new direction for the treatment and rehabilitation of AD.
文摘The purpose of this study was to evaluate the roles of different housing environments in neurological function, cerebral metabolism, cerebral infarction and neuron apoptosis after focal cerebral ischemia. Twenty-eight Sprague-Dawley rats were divided into control group (CG) and cerebral ischemia group, and the latter was further divided into subgroups of different housing conditions: standard environment (SE) subgroup, individual living environment (IE) subgroup, and enriched environment (EE) subgroup. Focal cerebral ischemia was induced by the middle cerebral artery occlusion (MCAO). Beam walking test was used to quantify the changes of overall motor function. Cerebral infarction and cerebral metabolism were studied by in vivo magnetic resonance imaging and 1H-magnetic resonance spectra, respectively. Neuron necrosis and apoptosis were detected by hematoxylin-eosin and TUNEL staining methods, respectively. The results showed that performance on the beam-walk test was improved in EE subgroup when compared to SE subgroup and IE subgroup. Cerebral infarct volume in IE subgroup was significantly larger than that in SE subgroup (P〈0.05) and EE subgroup (P〈0.05) on day 14 after MCAO. NAA/Cr and Cho/Cr ratios were lower in MCAO groups under different housing conditions as compared to those in CG (P〈0.05). NAA/Cr ratio was lower in IE subgroup (P〈0.05) and higher in EE subgroup (P〈0.05) than that in SE subgroup. NAA/ Cr ratio in EE was significantly higher than that in IE subgroup (P〈0.05). Cho/Cr ratio was decreased in MCAO groups as compared to that in CG (P〈0.05). A significant decrease in normal neurons in cerebral cortex was observed in MCAO groups as compared to CG (P〈0.05). The amount of normal neurons was less in IE subgroup (P〈0.05), and more in EE subgroup (P〈0.05) than that in SE subgroup after MCAO. The amotmt of normal neurons in EE subgroup was significantly more than that in IE subgroup after MCAO (P〈0.05). The ratio of TUNEL-positive neurons in EE was significantly lower than that in SE subgroup (P〈0.05) and IE subgroup (P〈0.05). Correlation analysis showed that the beam walking test was negatively correlated with NAA/Cr ratio (P〈0.05). Cerebral infarct volume was negatively correlated with both NAA/Cr ratio (P〈0.01) and Cho/Cr ratio (P〈0.01). The amount of normal cortical neurons was positively correlated with both NAA/Cr ratio (P〈0.0I) and Cho/Cr ratio (P〈0.05). The TUNEL-positive neurons showed a negative correlation with both NAA/Cr ratio (P〈0.01) and Cho/Cr ratio (P〈0.01). This study goes further to show that EE may improve neurological functional deficit and cerebral metabolism, decrease cerebral infarct volume, neuron necrosis and apoptosis, while IE may aggravate brain damage after MCAO.
文摘There is a growing acceptance of the vital role patient centered design plays in shaping the environment. Art can be of use in every area of health care. It is within the power of each person to share and interpret experience by means of the arts, by viewing the work of others, and by using feelings and imagination. Health professionals [n = 24 of a total of n = 35], answered the Wheel Questionnaire test instrument. It measures structure, motivation/engagement, and degree of emotional investment in a situation. Participants were requested to describe, in their own words, their perception of the enrichment of the ward interiordesign and the double-sided photos with a short poetic text, and the photo-book placed at each patient room. The results demonstrate that participants are motivated, structured and emotionally engaged when describing the new enrichment. The domains and themes are: Social interaction domain;rising thoughts and conversations. Comfort domain;atmosphere. Aesthetic do main;enrichment of the working environment. It could be concluded that the surgical ward environmental enrichment stimulated conversations between health professionals and between health professionals and patients and should be regarded as an important aspect in hospital planning.
基金supported by a grant from the Massachusetts Alzheimer’s Disease Research Center(5P50 AG 005134)(to SL).
文摘Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulating various amyloid-βoligomers in the brain,influenced by complex genetic and environmental factors.The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer’s disease are believed to primarily result from synaptic dysfunction.Throughout life,environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders.These changes,known as epigenetic modifications,also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity.In this context,we highlight recent advances in understanding the roles played by key components of the epigenetic machinery,specifically DNA methylation,histone modification,and microRNAs,in the development of Alzheimer’s disease,synaptic function,and activity-dependent synaptic plasticity.Moreover,we explore various strategies,including enriched environments,exposure to non-invasive brain stimulation,and the use of pharmacological agents,aimed at improving synaptic function and enhancing long-term potentiation,a process integral to epigenetic mechanisms.Lastly,we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer’s disease.We suggest that addressing Alzheimer’s disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug.
基金supported by the National Natural Science Foundation of China(82174471).
文摘The three-phase Enriched Environment(EE)paradigm has been shown to promote post-stroke functional improvement,but the neuronal mechanisms are still unclear.In this study,we applied a multimodal neuroimaging protocol combining magnetic resonance imaging(MRI)and positron emission tomography(PET)to examine the effects of post-ischemic EE treatment on structural and functional neuroplasticity in the bilateral sensorimotor cortex.Rats were subjected to permanent middle cerebral artery occlusion.The motor function of the rats was examined using the DigiGait test.MRI was applied to investigate the EE-induced structural modifications of the bilateral sensorimotor cortex.[^(18)F]-fluorodeoxyglucose PET was used to detect glucose metabolism.Blood oxygen level-dependent(BOLD)-functional MRI(fMRI)was used to identify the regional brain activity and functional connectivity(FC).In addition,the expression of neuroplasticity-related signaling pathways including neurotrophic factors(BDNF/CREB),axonal guidance proteins(Robo1/Slit2),and axonal growth-inhibitory proteins(NogoA/NgR)as well as downstream proteins(RhoA/ROCK)in the bilateral sensorimotor cortex were measured by Western blots.Our results showed the three-phase EE improved the walking ability.Structural T2 mapping imaging and diffusion tensor imaging demonstrated that EE benefited structure integrity in the bilateral sensorimotor cortex.PET-MRI fused images showed improved glucose metabolism in the corresponding regions after EE intervention.Specifically,the BOLD-based amplitude of low-frequency fluctuations showed that EE increased spontaneous activity in the bilateral motor cortex and ipsilateral sensory cortex.In addition,FC results showed increased sensorimotor connectivity in the ipsilateral hemisphere and increased interhemispheric motor cortical connectivity and motor cortical-thalamic connectivity following EE intervention.In addition,a strong correlation was found between increased functional connectivity and improved motor performance of limbs.Specifically,EE regulated the expression of neuroplasticity-related signaling,involving BDNF/CREB,Slit2/Robo1,as well as the axonal growth–inhibitory pathways Nogo-A/Nogo receptor and RhoA/ROCK in the bilateral sensorimotor cortex.Our results indicated that the three-phase enriched environment paradigm enhances neuronal plasticity of the bilateral sensorimotor cortex and consequently ameliorates post-stroke gait deficits.These findings might provide some new clues for the development of EE and thus facilitate the clinical translation of EE.
基金Supported by Guangxi Science and Technology Major Project(GK AA17202027-4)Key R&D Program of Guangxi Science and Technology Department(GK AB16380087)+2 种基金Tengxian Pueraria thomsonii Benth Experimental Station Project of Guangxi(G TS201431)Special Fund for Basal Scientific Research of Guangxi Academy of Agricultural Sciences(GNK 2019M16)Nanning Science and Technology Planning Project(20192085)。
文摘The cultivation technology of selenium-containing plant Pueraria thomsonii Benth was summarized from the producing area conditions,variety selection,field management and other aspects,which is of great significance for increasing the selenium concentration in humans or animals.