期刊文献+
共找到2,128篇文章
< 1 2 107 >
每页显示 20 50 100
Effect of Water Absorption on the Mechanical Property and Failure Mechanism of Hollow Glass Microspheres Composite Epoxy Resin Solid Buoyancy Materials
1
作者 DING Yue ZHAI Gang-jun +2 位作者 MA Zhe WEI Zi-hao LI Xin 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期876-884,共9页
To study the water absorption of hollow glass microspheres(HGMs)composite epoxy resin solid buoyancy materials in the marine environment and its effect on the mechanical properties,the water absorption was measured by... To study the water absorption of hollow glass microspheres(HGMs)composite epoxy resin solid buoyancy materials in the marine environment and its effect on the mechanical properties,the water absorption was measured by immersing the material in distilled water for 36 days at ambient temperature and fitted to Fick’s second law.The strength of materials before and after water absorption were tested by uniaxial experiments,and the effects of the filling ratio and water absorption on the mechanical properties of the materials were analyzed and explained.Finally,the failure modes and mechanism of the hollow glass microspheres composite material were explicated from the microscopic level by scanning electron microscope(SEM).This research will help solve the problems of solid buoyancy materials in ocean engineering applications. 展开更多
关键词 solid buoyancy material water absorption mechanical property failure mechanism scanning electron microscope
下载PDF
Integrating thermal energy storage and microwave absorption in phase change material-encapsulated core-sheath MoS_(2)@CNTs
2
作者 Panpan Liu Yang Li +6 位作者 Zhaodi Tang Junjun Lv Piao Cheng Xuemei Diao Yu Jiang Xiao Chen Ge Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期41-49,共9页
Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To c... Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To conquer this goal,herein,two-dimensional MoS_(2) nanosheets are grown in situ on the surface of one-dimensional CNTs to prepare core-sheath MoS_(2)@CNTs for the encapsulation of paraffin wax(PW).Benefiting from the synergistic enhancement photothermal effect of MoS_(2) and CNTs,MoS_(2)@CNTs is capable of efficiently trapping photons and quickly transporting phonons,thus yielding a high solar-thermal energy conversion and storage efficiency of 94.97%.Meanwhile,PW/MoS_(2)@CNTs composite PCMs exhibit a high phase change enthalpy of 101.60 J/g and excellent lo ng-term thermal storage durability after undergoing multiple heating-cooling cycles.More attractively,PW/MoS_(2)@CNTs composite PCMs realize thermal management functional microwave absorption in heat-related electronic application scenarios,which is superior to the single microwave absorption of traditional materials.The minimum reflection loss(RL) for PW/MoS_(2)@CNTs is-28 dB at 12.91 GHz with a 2.0 mm thickness.This functional integration design provides some insightful references on developing advanced microwave absorbing composite PCMs,holding great potential towards high-efficiency solar energy utilization and thermally managed microwave absorption fields. 展开更多
关键词 Phase change materials Core-sheath MoS_(2)@CNTs Solar-thermal energy conversion Thermal energy storage Microwave absorption
下载PDF
Influence of manufacturing process-induced geometrical defects on the energy absorption capacity of polymer lattice structures
3
作者 Alexandre Riot Enrico Panettieri +1 位作者 Antonio Cosculluela Marco Montemurro 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期47-59,共13页
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r... Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for. 展开更多
关键词 Lattice structures Architected cellular materials Dynamic simulation Energy absorption Geometrical imperfection Additive manufacturing
下载PDF
Construction of enhanced multi-polarization and high performance electromagnetic wave absorption by self-growing ZnFe_(2)O_(4)on Cu_(9)S_(5)
4
作者 Wenxiong Chen Honglong Xing 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1922-1934,共13页
The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrot... The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrothermal method.The crystallographic and surface phase chemical information,morphological structure,and magnetic and EM parameters of the composites were analyzed.The prepared Cu_(9)S_(5)/ZnFe_(2)O_(4)composites have multiple loss paths for EM waves and present an overall 3D flower-like structure.The Cu_(9)S_(5)/ZnFe_(2)O_(4)composites exhibit a minimum reflection loss of-54.38 dB and a broad effective absorption bandwidth of 5.92 GHz.Through magnetization,ZnFe_(2)O_(4)particles are self-assembled and grown on the surfaces of Cu_(9)S_(5).Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces,crystalline defects,special three-dimensional flower-like structures,and magneto-electrical coupling loss effects.Moreover,the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material.This work can provide a strategy for the use of magnetizationmodified sulfide composite functional materials in EM wave absorption. 展开更多
关键词 self-assembled material electromagnetic wave absorption enhanced multi-polarization effect Cu_(9)S_(5)/ZnFe_(2)O_(4)composites radar cross-section
下载PDF
A Review on Metal-Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption Materials 被引量:25
5
作者 Zhiwei Zhang Zhihao Cai +5 位作者 Ziyuan Wang Yaling Peng Lun Xia Suping Ma Zhanzhao Yin Yi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期1-29,共29页
The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar st... The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application. 展开更多
关键词 Metal-organic frameworks Porous carbon Microwave absorption material Reflection loss Effective absorption bandwidth
下载PDF
Development of a High Sound Absorption Material CEMCOM 被引量:4
6
作者 马保国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第4期5-8,共4页
Based on sound absorption mechanism of material,the special sound absorption material CEMCOM for road sound insulation is introduced.This high sound absorption material is mainly composed of expanded perlite.Using mul... Based on sound absorption mechanism of material,the special sound absorption material CEMCOM for road sound insulation is introduced.This high sound absorption material is mainly composed of expanded perlite.Using multiple sound absorption structure can improve sound absorption property of material.According to the preparation principle and durability design of material,a new kind of material with low cost and high durability is developed. 展开更多
关键词 sound absorption coefficient sound absorption structure porous material
下载PDF
State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials 被引量:10
7
作者 Shuning Ren Haojie Yu +6 位作者 Li Wang Zhikun Huang Tengfei Lin Yudi Huang Jian Yang Yichuan Hong Jinyi Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期238-276,共39页
Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating hu... Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating human’s daily life.Therefore,designing high-performance microwave absorption materials(MAMs)has become an indispensable requirement.Recently,metal-organic frameworks(MOFs)have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure,high porosity and large specific surface area.Usually,MOF-derived MAMs exhibit excellent electrical conductivity,good magnetism and sufficient defects and interfaces,providing obvious merits in both impedance matching and microwave loss.In this review,the recent research progresses on MOF-derived MAMs were profoundly reviewed,including the categories of MOFs and MOF composites precursors,design principles,preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs.Finally,the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed. 展开更多
关键词 Microwave absorption materials Metal-organic frameworks Preparation methods Mechanisms of microwave absorption
下载PDF
Sound absorption performance of acoustic metamaterials composed of double-layer honeycomb structure 被引量:5
8
作者 WANG Da XIE Su-chao +1 位作者 YANG Shi-chen LI Zhen 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2947-2960,共14页
The purpose of the research is to assess the sound absorption performance(SAP)of acoustic metamaterials made of double-layer Nomex honeycomb structures in which a micro-orifice corresponds to a honeycomb unit.For this... The purpose of the research is to assess the sound absorption performance(SAP)of acoustic metamaterials made of double-layer Nomex honeycomb structures in which a micro-orifice corresponds to a honeycomb unit.For this purpose,the influences of structural parameters on the SAP of acoustic metamaterials were investigated by using experimental testing and a validated theoretical model.In addition,the sandwich structure was optimized by the genetic algorithm.The research shows that the panel thickness and micro-orifice diameter mainly affect the second resonant frequency and second peak sound absorption coefficient(SAC)of the structure.The unit cell size is found to influence the first and second resonant frequencies and two peaks of the SAC.An extremely low side-length of the honeycomb core decreases the SAP of the structure for low-frequency noise signals.Additionally,the sandwich structure presents a better SAP when the diameter of micro-orifices on the front micro-perforated panel(MPP)exceeds that of the back MPP.The sandwich structure shows better noise reduction performance after the optimization aiming at the noise frequency outside trains. 展开更多
关键词 acoustic metamaterials sound absorption honeycomb sandwich panel micro-perforated panel
下载PDF
Non-isothermal microwave leaching kinetics and absorption characteristics of primary titanium-rich materials 被引量:4
9
作者 夏洪应 彭金辉 +4 位作者 牛浩 黄孟阳 张正勇 张泽彪 黄铭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期721-726,共6页
The non-isothermal leaching kinetics of primary titanium-rich material by microwave heating was investigated,and the temperature-pressure curves of leaching system and microwave absorption characteristics of mixture s... The non-isothermal leaching kinetics of primary titanium-rich material by microwave heating was investigated,and the temperature-pressure curves of leaching system and microwave absorption characteristics of mixture solutions before and after leaching were measured.The research of non-isothermal kinetics was evaluated by the leaching rate of Fe and the total apparent velocity equation of the non-isothermal kinetics of leaching for primary titanium-rich material by microwave heating was obtained.It is shown from the temperature-pressure curves that the high temperature and high pressure of closed leaching system are favorable to the enhancement of the leaching rate of Fe.Microwave absorption characteristics of mixture solutions before and after leaching show that there are abrupt changes of microwave absorption characteristics for 15%HCl solution and the mixture solution after leaching by 20%HCl. 展开更多
关键词 primary titanium-rich material non-isothermal kinetics microwave absorption characteristic
下载PDF
Theoretical investigation on near-infrared and visible absorption spectra of nanometallic aluminium with oxide coating in nanoenergetic materials:size and shape effects 被引量:1
10
作者 彭亚晶 张淑平 +1 位作者 王英惠 杨延强 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第9期3505-3511,共7页
The effects of metal core dimension, oxide shell thickness and ellipsoid aspect ratio of Al-Al2O3 core-shell nanoparticles on the near-infrared and visible absorption spectra of nanocomposite Al-Al2O3/nitrocellulose... The effects of metal core dimension, oxide shell thickness and ellipsoid aspect ratio of Al-Al2O3 core-shell nanoparticles on the near-infrared and visible absorption spectra of nanocomposite Al-Al2O3/nitrocellulose(NC) film are investigated by numerical calculations. Both the size-dependent interband transitions and frequency-dependent free electron damping of the nanometallic aluminium are taken into account in the calculations. Oxidation effect of nanoaluminium is also analysed. It is shown that oxidation may enhance but may also reduce the optical absorption, depending on the excited light energy and initial dimension of nanoparticle. Metal core size and excited light energy dominate the absorption characteristic. The absorption ability of ellipsoidal nanoparticles is larger than that of spheroidal nanoparticles and increases by the square index as the aspect ratio increases. These calculations will provide some significant theoretical guidance for the preparation and laser ignition of nanoenergetic materials. 展开更多
关键词 core-shell nanoparticle optical absorption interband transition nanoenergetic material
下载PDF
Analytical Methods for Prediction of Water Absorption in Cement-Based Material 被引量:1
11
作者 王立成 《China Ocean Engineering》 SCIE EI 2009年第4期719-728,共10页
The capillary absorption of water by unsaturated cement-based material is the main reason of degradation of the structures subjected to an aggressive environment since water often acts as the transporting medium for d... The capillary absorption of water by unsaturated cement-based material is the main reason of degradation of the structures subjected to an aggressive environment since water often acts as the transporting medium for damaging contaminants. It is well known that the capillarity coefficient and sorptivity are two important parameters to characterize the water absorption of porous materials. Generally, the former is used to describe the penetration depth or height of water transport, which must be measured by special and advanced equipment. In contrast, the sorptivity represents the relationship between cumulative volume of water uptake and the squareroot of the elapsed time, which can be easily measured by the gravimetric method in a normal laboratory condition. In the present study, an analytical method is developed to build up a bridge between these two parameters, with the purpose that the sorptivity or the gravimetric method can be used to predict the penetration depth of water absorption. Additionally, a new model to explain the dependence of sorptivity on initial water content of the material is developed in order to fit the in situ condition. The comparison of predicted results by the analytical method with experimental data or numerical calculation results, as well as some previous models, validates the feasibility of the methods presented in this paper. 展开更多
关键词 water absorption capillarity coefficient SORPTIVITY cement-based material initial water content
下载PDF
Computational Analysis of the Effect of Nano Particle Material Motion on Mixed Convection Flow in the Presence of Heat Generation and Absorption 被引量:2
12
作者 Muhammad Ashraf Amir Abbas +3 位作者 Saqib Zia Yu-Ming Chu Ilyas Khan Kottakkaran Sooppy Nisar 《Computers, Materials & Continua》 SCIE EI 2020年第11期1809-1823,共15页
The present study is concerned with the physical behavior of the combined effect of nano particle material motion and heat generation/absorption due to the effect of different parameters involved in prescribed flow mo... The present study is concerned with the physical behavior of the combined effect of nano particle material motion and heat generation/absorption due to the effect of different parameters involved in prescribed flow model.The formulation of the flow model is based on basic universal equations of conservation of momentum,energy and mass.The prescribed flow model is converted to non-dimensional form by using suitable scaling.The obtained transformed equations are solved numerically by using finite difference scheme.For the analysis of above said behavior the computed numerical data for fluid velocity,temperature profile,and mass concentration for several constraints that is mixed convection parameterλt,modified mixed convection parameterλc,Prandtl number Pr,heat generation/absorption parameterδ,Schmidt number Sc,thermophoresis parameter Nt,and thermophoretic coefficient k are sketched in graphical form.Numerical results for skin friction,heat transfer rate and the mass transfer rate are tabulated for various emerging physical parameters.It is reported that in enhancement in heat,generation boosts up the fluid temperature at some positions of the surface of the sphere.As heat absorption parameter is decreased temperature field increases at position X=π/4 on the other hand,no alteration at other considered circumferential positions is noticed. 展开更多
关键词 Nano material mixed convection finite difference method heat generation/absorption SPHERES
下载PDF
Application of Air-cooled Blast Furnace Slag Aggregates as Replacement of Natural Aggregates in Cement-based Materials:A Study on Water Absorption Property 被引量:1
13
作者 王爱国 liu peng +3 位作者 liu kaiwei li yan zhang gaozhan 孙道胜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期445-451,共7页
The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregat... The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively. 展开更多
关键词 air-cooled blast furnace slag aggregate cement-based materials water absorption coefficient interface structure
下载PDF
γ- ray self-absorption of cylindrical fissile material 被引量:2
14
作者 HUANGYong-Yi CHENGYi-Ying +2 位作者 TIANDong-Feng LUFu-Quan YANGFu-Jia 《Nuclear Science and Techniques》 SCIE CAS CSCD 2005年第1期17-24,共8页
The self-absorption of γ-ray emitted from cylindrical fissile materials, such as 235 U and 239 Pu, does not possess spherical symmetry. The analytical formulae of self-absorption for γ-ray throughout the cylinder ha... The self-absorption of γ-ray emitted from cylindrical fissile materials, such as 235 U and 239 Pu, does not possess spherical symmetry. The analytical formulae of self-absorption for γ-ray throughout the cylinder have been obtained. The intensity of γ-ray is a function of γ-ray outgoing directions and cylindrical configurations, accordingly one can acquire the information about geometrical configuration of cylindrical fissile materials through multi-location measurements. Further more, the method is given in this article. The result can be applied to the fissile material safe- guard, such as nuclear monitoring and verifying. 展开更多
关键词 γ-射线自吸收 核能燃料 分裂物质 同位素成分 多段测量
下载PDF
Gamma ray absorption of cylindrical fissile material with dual shields 被引量:1
15
作者 WU Chen-Yan TIAN Dong-Feng +3 位作者 CHENG Yi-Ying HUANG Yong-Yi LU Fu-Quan YANG Fu-Jia 《Nuclear Science and Techniques》 SCIE CAS CSCD 2005年第5期266-272,共7页
This work analyzed the gamma ray attenuation effect from the self-absorption and shield attenuation per-spectively. An exact mathematical equation was given for the geometric factor of the cylindrical fissile material... This work analyzed the gamma ray attenuation effect from the self-absorption and shield attenuation per-spectively. An exact mathematical equation was given for the geometric factor of the cylindrical fissile material with dual shields. In addition, several approximation approaches suitable for real situation were discussed, especially in the radial and axial directions of the cylinders, since the G-factors have simple forms. Then the space distribution patterns of the G-factor were analyzed based on numerical result and effective ways to solve the geometric informa-tion of the cylindrical fissile material, the radii and the heights, were deduced. This method was checked and verified by numerical calculation. Because of the efficiency of the method, it is ideal for application in real situations, such as nuclear safeguards, which demands speed of detection and accuracy of geometric analysis. 展开更多
关键词 Γ射线 裂变反应 核反应堆 吸收能力
下载PDF
Study on Performance and Mechanism of Oil Absorption Materials
16
作者 韩梅 吴兵 +2 位作者 李发生 何绪文 谷庆宝 《Journal of China University of Mining and Technology》 2001年第2期208-211,共4页
Both the commonly used and the PHBV based oil absorption materials were studied and the absorption mechanism was analyzed. The results show that the oil pick up ratios and the absorption rates of molded PHBV are almos... Both the commonly used and the PHBV based oil absorption materials were studied and the absorption mechanism was analyzed. The results show that the oil pick up ratios and the absorption rates of molded PHBV are almost the same as that of oil absorption polypropylene felt. In addition, the oil keeping ability of molded PHBV is superior to the latter. So the PHBV is a valuable and bio degradable oil absorption material. 展开更多
关键词 oil absorption material PHBV adsorbent characteristics
下载PDF
Chemical Analysis of Magnesia and Magnesia-Alumina Refractory Materials——Flame atomic absorption spectrometric method for determination of calcium oxide content
17
作者 ZHANG Xiaohui 《China's Refractories》 CAS 2006年第4期41-43,共3页
1 Scope This standard specifics the determination of calcium oxide coutent by flame atomic absorption spectrometric method.
关键词 Chemical Analysis of Magnesia and Magnesia-Alumina Refractory materials Flame atomic absorption spectrometric method for determination of calcium oxide content
下载PDF
Mutual Competitive Absorption of Water and Essential Oils Molecules by Porose Ligno-Cellulosic Materials
18
作者 Bretislav Cesek Miloslav Milichovsky Jan Gojny 《Journal of Biomaterials and Nanobiotechnology》 2014年第2期66-75,共10页
Competitive absorption processes, i.e. condensation, of water and essential oils (EO) are predominantly controlled by extent of condensation of diffusing water and EO molecules with marginal influence of porose ligno-... Competitive absorption processes, i.e. condensation, of water and essential oils (EO) are predominantly controlled by extent of condensation of diffusing water and EO molecules with marginal influence of porose ligno-cellulosic matter and a sort of EO. With increase of absorption the diffusion is depressed and vice versa. Diffusion of water molecules through porose system is usually slower in comparison with other molecules. It was discovered that a presence of EO decreases paper web humidity with increasing influence in environment with high relative air humidity. Likely, fast diffusing EO molecules decrease the ability of water molecules condensed in all accessible pores particularly in the non-penetrable pores. 展开更多
关键词 Cellulosic Base materials Essential Oils Moistening Porous materials Vapour absorption
下载PDF
Progress in MXene-based materials for microwave absorption 被引量:1
19
作者 Xingwei Wang Chen Zhao +6 位作者 Chuanpeng Li Yu Liu Shuang Sun Qiangliang Yu Bo Yu Meirong Cai Feng Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第13期207-225,共19页
Due to the rapid development of radar technology,the demand for absorbing stealth materials is increas-ing,and ultra-broadband absorption(effective absorption bandwidth>8 GHz)has become an inevitable requirement.As... Due to the rapid development of radar technology,the demand for absorbing stealth materials is increas-ing,and ultra-broadband absorption(effective absorption bandwidth>8 GHz)has become an inevitable requirement.As a new type of two-dimensional material,MXene material possesses the characteristics of excellent wave absorbing material due to its easy preparation,easy modulation of defects and sur-face functional groups,and high conductivity.This work summarizes the absorbing theory and research progress on MXene-based absorbing materials in recent years,including pure MXene absorbing materials and MXene-based magnetic or dielectric composite materials with multiple losses.Some shortcomings and research directions of MXene-based materials were pointed out.Currently,research on MXene-based absorbent materials is thriving and in a state of vigorous development.Excellent absorbent materials have been reported,but their shortcomings are also apparent.The factors that affect the performance of MXene-based absorbent materials are complex,and the absorption mechanism is relatively simple.Further systematic and detailed research is needed to clarify these influencing mechanisms,broaden the absorption bandwidth,and reduce the matching thickness to meet practical usage requirements in the future. 展开更多
关键词 Microwave absorption materials MXene Impedance matching Dielectric loss Magnetic loss ATTENUATION
原文传递
Ballistic impact simulation of Kevlar-129 fiber reinforced composite material 被引量:1
20
作者 张明 原梅妮 +1 位作者 向丰华 王振兴 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期286-290,共5页
The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el... The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment. 展开更多
关键词 ballistic limit finite element specific energy absorption Kevlar fiber reinforced composite material
下载PDF
上一页 1 2 107 下一页 到第
使用帮助 返回顶部