This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection...This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.展开更多
This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy s...This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy structure and coplanar waveguide electrodes,the fabricated 4-μm-diameter PD exhibits ultra-flat frequency response and high saturation power.Integrated passive circuits including low-loss bias-tee and E-plane probe are designed to package the PD into a compact module with waveguide output.The packaged PD module has demonstrated a flat frequency response with fluctuations within±2.75 d B over a broadband of 140–220 GHz and a high saturated output power of-7.8 d Bm(166μW)at 140 GHz.For wireless communication applications,the packaged PD is used to implement 1-m free space transmission at carrier frequencies of 150.5 and 210.5 GHz,with transmission rates of 75 and 90 Gbps,respectively.展开更多
Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networ...Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networks and applications have been rapidly evolving from achieving “connected things” to embracing “connected intelligence”.展开更多
As increasing amounts of private and confidential information are transmitted over wireless networks,their openness and broadcast pose significant security risks.In high-security scenarios like healthcare and financia...As increasing amounts of private and confidential information are transmitted over wireless networks,their openness and broadcast pose significant security risks.In high-security scenarios like healthcare and financial activities,initial exposure of transmitted information can lead to serious threats.Covert communication,or low probability of detection(LPD)communication,has gained attention for its ability to hide transmission behaviors.展开更多
At 12.8 MHz center frequency,the advanced miniaturized polymer-based planar high quality factor(Q)passive elements embedded bandpassfilter works in the L-band.Because most of the demands operate inside the spectrum,the...At 12.8 MHz center frequency,the advanced miniaturized polymer-based planar high quality factor(Q)passive elements embedded bandpassfilter works in the L-band.Because most of the demands operate inside the spectrum,the wideband or high-speed operation necessary to enhance must be acquired in microwave frequency ranges.The channel has a quiet,high-performance micro-filter with wideband rejection.Capacitors and inductors are used in the high quality factor(Q)passive components,and related networks are incorporated in thefilter.Embedded layers are concatenated using Three-Dimensional Integrated Circuit(3D-IC)integration,parasitics are removed,and interconnection losses are negotiated using de-embedding methods.A wireless application-based Liquid Crystalline Polymer(LCP)viewpoint is employed as a substrate material in this work.The polymer processes,their properties,and the incorporated high-Q Band Pass Filter Framework.The suggestedfilter model is computed and manufactured utilizing the L-band frequency spectrum,decreasing total physical length by 31%while increasing bandwidth by 45%.展开更多
The Chaotic Baseband Wireless Communication System(CBWCS)is expected to eliminate the Inter-Symbol Interference(ISI)caused by multipath propagation by using the optimal decoding threshold that is the sum of the ISI ca...The Chaotic Baseband Wireless Communication System(CBWCS)is expected to eliminate the Inter-Symbol Interference(ISI)caused by multipath propagation by using the optimal decoding threshold that is the sum of the ISI caused by past decoded bits and the ISI caused by future transmitting bits.However,the current technique is only capable of removing partial effects of the ISI,because only past decoded bits are available for the suboptimal decoding threshold calculation.The unavailability of the future information needed for the optimal decoding threshold is an obstacle to further improve the Bit Error Rate(BER)performance.In contrast to the previous method using Echo State Network(ESN)to predict one future bit,the proposed method in this paper predicts the optimal decoding threshold directly using ESN.The proposed ESN-based threshold prediction method simplifies the symbol decoding operation by avoiding the iterative prediction of the output waveform points using ESN and accumulated error caused by the iterative operation.With this approach,the calculation complexity is reduced compared to the previous ESN-based approach.The proposed method achieves better BER performance compared to the previous method.The reason for this superior result is twofold.First,the proposed ESN is capable of using more future symbols information conveyed by the ESN input to obtain more accurate threshold rather than the previous method in which only one future symbol was available.Second,the proposed method here does not need to estimate the channel information using Least Squared(LS)method,which avoids the extra error caused by inaccurate channel information estimation.Simulation results and experiment based on a wireless open-access research platform under a practical wireless channel show the effectiveness and superiority of the proposed method.展开更多
With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes ...With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.展开更多
Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicl...Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.展开更多
Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have...Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have demonstrated the ability of manipulating the amplitude or phase of electromagnetic waves in a programmable manner in real time, which renders them especially appealing in the applications of wireless communications. In this paper, we present the fundamental principle of applying programmable metasurface as transmitter for wireless communications. Then, we establish a prototype system of metasurface-based transmitter to conduct several experiments and measurements over the air, which practically demonstrate the feasibility of using programmable metasurfaces in future communication systems. By exploiting the dynamically controllable property of programmable metasurface, the design, implementation and experimental evaluation of the proposed metasurface-based wireless communication system are presented with the prototype, which realizes single carrier quadrature phase shift keying(QPSK) transmission over the air. In the developed prototype, the phase of the reflected electromagnetic wave of programma-ble metasurface is directly manipulated in real time according to the baseband control signal, which achieves 2.048 Mbps data transfer rate with video streaming transmission over the air. In addition, experimental result is provided to compare the performance of the proposed metasurface-based architecture against the conventional one. With the slight increase of the transmit power by 5 dB, the same bit error rate(BER) performance can be achieved as the conventional system in the absence of channel coding. Such a result is encouraging considering that the metasurface-based system has the advantages of low hardware cost and simple structure, thus leading to a promising new architecture for wireless communications.展开更多
The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of...The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.展开更多
Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks ...Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.展开更多
There is an urgent global need for wireless communication utilizing materials that can provide simultaneous flexibility and high conductivity.Avoiding the harmful effects of electromagnetic(EM)radiation from wireless ...There is an urgent global need for wireless communication utilizing materials that can provide simultaneous flexibility and high conductivity.Avoiding the harmful effects of electromagnetic(EM)radiation from wireless communication is a persistent research hot spot.Two-dimensional(2D)materials are the preferred choice as wireless communication and EM attenuation materials as they are lightweight with high aspect ratios and possess distinguished electronic properties.MXenes,as a novel family of 2D materials,have shown excellent properties in various fields,owing to their excellent electrical conductivity,mechanical stability,high flexibility,and ease of processability.To date,research on the utility of MXenes for wireless communication has been actively pursued.Moreover,MXenes have become the leading materials for EM attenuation.Herein,we systematically review the recent advances in MXene-based materials with different structural designs for wireless communication,electromagnetic interference(EMI)shielding,and EM wave absorption.The relationship governing the structural design and the effectiveness for wireless communication,EMI shielding,and EM wave absorption is clearly revealed.Furthermore,our review mainly focuses on future challenges and guidelines for designing MXene-based materials for industrial application and foundational research.展开更多
In the intensity modulation and direct detection (IM/DD) multiple-input multiple-output (MIMO) optical wireless communication systems, a direct-current-biased adaptive modulation scheme is proposed to guarantee th...In the intensity modulation and direct detection (IM/DD) multiple-input multiple-output (MIMO) optical wireless communication systems, a direct-current-biased adaptive modulation scheme is proposed to guarantee the nonnegative property of transmitted signals, and the MIMO channel is converted to a parallel channel by using a singular value decomposition. Besides, a QR decomposition and successive interference cancellation based adaptive modulation scheme is proposed, and the MIMO channel can be simplified to a parallel channel under the bit error ratio (BER) target constraint. The power is optimally allocated to each sub-channel to maximize the data rate. Simulation results show that the proposed adaptive modulation schemes can effectively improve the transmission rate of the systems under the BER target and constant optical power constraints. The proposed adaptive modulation schemes make use of the multiplexing gain of the MIMO techniques, and can further improve the spectrum efficiency of optical wireless systems.展开更多
Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell ra...Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.展开更多
The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies ...The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.展开更多
The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messa...The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messages, eavesdropping, network intrusion and malicious forwarding. Conventional cryptography-based security may consume significant overhead because of low-power devices, so current research shifts to the wireless physical layer for security enhancement. This paper is mainly focused on security issues and solutions for wireless communications at the physical layer. It first describes the RSSI-based and channel based wireless authentication methods respectively, and presents an overview of various secrecy capacity analyses of fading channel, MIMO channel and cooperative transmission, and then examines different misbehavior detection methods. Finally it draws conclusions and introduces the direction of our future work.展开更多
The last seventy years have witnessed the transition of communication from Shannon’s As an ever-increasing amount of private and confidential information will be delivered over current and future wireless networks,th...The last seventy years have witnessed the transition of communication from Shannon’s As an ever-increasing amount of private and confidential information will be delivered over current and future wireless networks,the openness and broadcast natures of the ubiquitous wireless medium are bring concerns and security risks to our society.Specifically,in some certain scenarios that require a high level of security and privacy.展开更多
Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed ...Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway.Ensuring communications in heterogeneous WSNs,is a critical issue that needs to be studied.In this research paper,we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communication.Specifically,two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway.The overall system integrates many different sensors in terms of types,communication protocols,and accuracy,which can be used in many applications in realistic environments such as on land,under water,or in the air.In addition to this,a synchronous management software on ThingSpeak Web server and Blynk app is designed.In the proposed system,the token ring protocol in Zigbee network and polling mechanism in LoRa network is used.The system can operate with a packet loss rate of less than 0.5%when the communication range of the Zigbee network is 630 m,and the communication range of the LoRa network is 3.7 km.On the basis of the digital results collected on the management software,this study proves tremendous improvements in the system performance.展开更多
Traditional magnetically coupled resonant wireless power transfer technology uses fixed distances between coils for research,to prevent fluctuations in the receiving voltage,and lead to reduce transmission efficiency....Traditional magnetically coupled resonant wireless power transfer technology uses fixed distances between coils for research,to prevent fluctuations in the receiving voltage,and lead to reduce transmission efficiency.This paper proposes a closed-loop control wireless communication wireless power transfer system with a wearable four-coil structure to stabilize the receiving voltage fluctuation caused by changes in the displacement between the coils.Test results show that the system can provide stable receiving voltage,no matter how the distance between the transmitting coil and the receiving coil is changed.When the transmission distance is 20 mm,the power transfer efficiency of the system can reach 18.5%under the open-loop state,and the stimulus parameters such as the stimulation period and pulse width can be adjusted in real time through the personal computer terminal.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.
文摘This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.
基金supported in part by National Key Research and Development Program of China(No.2022YFB2803002)National Natural Science Foundation of China(Nos.62235005,62127814,62225405,61975093,61927811,61991443,61925104 and 61974080)Collaborative Innovation Centre of Solid-State Lighting and Energy-Saving Electronics.
文摘This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy structure and coplanar waveguide electrodes,the fabricated 4-μm-diameter PD exhibits ultra-flat frequency response and high saturation power.Integrated passive circuits including low-loss bias-tee and E-plane probe are designed to package the PD into a compact module with waveguide output.The packaged PD module has demonstrated a flat frequency response with fluctuations within±2.75 d B over a broadband of 140–220 GHz and a high saturated output power of-7.8 d Bm(166μW)at 140 GHz.For wireless communication applications,the packaged PD is used to implement 1-m free space transmission at carrier frequencies of 150.5 and 210.5 GHz,with transmission rates of 75 and 90 Gbps,respectively.
文摘Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networks and applications have been rapidly evolving from achieving “connected things” to embracing “connected intelligence”.
文摘As increasing amounts of private and confidential information are transmitted over wireless networks,their openness and broadcast pose significant security risks.In high-security scenarios like healthcare and financial activities,initial exposure of transmitted information can lead to serious threats.Covert communication,or low probability of detection(LPD)communication,has gained attention for its ability to hide transmission behaviors.
文摘At 12.8 MHz center frequency,the advanced miniaturized polymer-based planar high quality factor(Q)passive elements embedded bandpassfilter works in the L-band.Because most of the demands operate inside the spectrum,the wideband or high-speed operation necessary to enhance must be acquired in microwave frequency ranges.The channel has a quiet,high-performance micro-filter with wideband rejection.Capacitors and inductors are used in the high quality factor(Q)passive components,and related networks are incorporated in thefilter.Embedded layers are concatenated using Three-Dimensional Integrated Circuit(3D-IC)integration,parasitics are removed,and interconnection losses are negotiated using de-embedding methods.A wireless application-based Liquid Crystalline Polymer(LCP)viewpoint is employed as a substrate material in this work.The polymer processes,their properties,and the incorporated high-Q Band Pass Filter Framework.The suggestedfilter model is computed and manufactured utilizing the L-band frequency spectrum,decreasing total physical length by 31%while increasing bandwidth by 45%.
文摘The Chaotic Baseband Wireless Communication System(CBWCS)is expected to eliminate the Inter-Symbol Interference(ISI)caused by multipath propagation by using the optimal decoding threshold that is the sum of the ISI caused by past decoded bits and the ISI caused by future transmitting bits.However,the current technique is only capable of removing partial effects of the ISI,because only past decoded bits are available for the suboptimal decoding threshold calculation.The unavailability of the future information needed for the optimal decoding threshold is an obstacle to further improve the Bit Error Rate(BER)performance.In contrast to the previous method using Echo State Network(ESN)to predict one future bit,the proposed method in this paper predicts the optimal decoding threshold directly using ESN.The proposed ESN-based threshold prediction method simplifies the symbol decoding operation by avoiding the iterative prediction of the output waveform points using ESN and accumulated error caused by the iterative operation.With this approach,the calculation complexity is reduced compared to the previous ESN-based approach.The proposed method achieves better BER performance compared to the previous method.The reason for this superior result is twofold.First,the proposed ESN is capable of using more future symbols information conveyed by the ESN input to obtain more accurate threshold rather than the previous method in which only one future symbol was available.Second,the proposed method here does not need to estimate the channel information using Least Squared(LS)method,which avoids the extra error caused by inaccurate channel information estimation.Simulation results and experiment based on a wireless open-access research platform under a practical wireless channel show the effectiveness and superiority of the proposed method.
基金Prospective Research Project on Future Networks of Jiangsu Province,China(No.BY2013095-1-18)
文摘With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.
基金China Tele-com Research Institute Project(Grants No.HQBYG2200147GGN00)National Key R&D Program of China(2020YFB1807600)National Natural Science Foundation of China(NSFC)(Grant No.62022020).
文摘Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.
基金supported in part by the National Science Foundation(NSFC)for Distinguished Young Scholars of China with Grant 61625106the National Natural Science Foundation of China under Grant 61531011
文摘Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have demonstrated the ability of manipulating the amplitude or phase of electromagnetic waves in a programmable manner in real time, which renders them especially appealing in the applications of wireless communications. In this paper, we present the fundamental principle of applying programmable metasurface as transmitter for wireless communications. Then, we establish a prototype system of metasurface-based transmitter to conduct several experiments and measurements over the air, which practically demonstrate the feasibility of using programmable metasurfaces in future communication systems. By exploiting the dynamically controllable property of programmable metasurface, the design, implementation and experimental evaluation of the proposed metasurface-based wireless communication system are presented with the prototype, which realizes single carrier quadrature phase shift keying(QPSK) transmission over the air. In the developed prototype, the phase of the reflected electromagnetic wave of programma-ble metasurface is directly manipulated in real time according to the baseband control signal, which achieves 2.048 Mbps data transfer rate with video streaming transmission over the air. In addition, experimental result is provided to compare the performance of the proposed metasurface-based architecture against the conventional one. With the slight increase of the transmit power by 5 dB, the same bit error rate(BER) performance can be achieved as the conventional system in the absence of channel coding. Such a result is encouraging considering that the metasurface-based system has the advantages of low hardware cost and simple structure, thus leading to a promising new architecture for wireless communications.
基金supported by the National Basic Research Program of China (973 Program No.2012CB316100)
文摘The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063) and the National High Technology Research and Development Program of China (Grant No. 2013AA013601).
文摘Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.
基金National Natural Science Foundation of China(Nos.11774027,51132002,51977009 and 51372282).
文摘There is an urgent global need for wireless communication utilizing materials that can provide simultaneous flexibility and high conductivity.Avoiding the harmful effects of electromagnetic(EM)radiation from wireless communication is a persistent research hot spot.Two-dimensional(2D)materials are the preferred choice as wireless communication and EM attenuation materials as they are lightweight with high aspect ratios and possess distinguished electronic properties.MXenes,as a novel family of 2D materials,have shown excellent properties in various fields,owing to their excellent electrical conductivity,mechanical stability,high flexibility,and ease of processability.To date,research on the utility of MXenes for wireless communication has been actively pursued.Moreover,MXenes have become the leading materials for EM attenuation.Herein,we systematically review the recent advances in MXene-based materials with different structural designs for wireless communication,electromagnetic interference(EMI)shielding,and EM wave absorption.The relationship governing the structural design and the effectiveness for wireless communication,EMI shielding,and EM wave absorption is clearly revealed.Furthermore,our review mainly focuses on future challenges and guidelines for designing MXene-based materials for industrial application and foundational research.
基金The National High Technology Research and Development Program of China(863 Program)(No.2013AA013601)the National Science and Technology M ajor Project of China(No.2015ZX03004009)
文摘In the intensity modulation and direct detection (IM/DD) multiple-input multiple-output (MIMO) optical wireless communication systems, a direct-current-biased adaptive modulation scheme is proposed to guarantee the nonnegative property of transmitted signals, and the MIMO channel is converted to a parallel channel by using a singular value decomposition. Besides, a QR decomposition and successive interference cancellation based adaptive modulation scheme is proposed, and the MIMO channel can be simplified to a parallel channel under the bit error ratio (BER) target constraint. The power is optimally allocated to each sub-channel to maximize the data rate. Simulation results show that the proposed adaptive modulation schemes can effectively improve the transmission rate of the systems under the BER target and constant optical power constraints. The proposed adaptive modulation schemes make use of the multiplexing gain of the MIMO techniques, and can further improve the spectrum efficiency of optical wireless systems.
基金supported in part by the National Natural Science Foundation of China under Grant No.61671145the Key R&D Program of Jiangsu Province of China under Grant BE2018121
文摘Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.
基金supported by the National Natural Science Foundation of China(Grant Nos.61522109,61671253,61571037and 91738201)the Fundamental Research Funds for the Central Universities(No.2016JBZ006)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20150040and BK20171446)the Key Project of Natural Science Research of Higher Education Institutions of Jiangsu Province(No.15KJA510003)
文摘The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.
基金supported in part by State Key Program of National Nature Science Foundation of China under Grant No.60932003National High Technical Research and Development Program of China (863 Program ) under Grant No.2007AA01Z452
文摘The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messages, eavesdropping, network intrusion and malicious forwarding. Conventional cryptography-based security may consume significant overhead because of low-power devices, so current research shifts to the wireless physical layer for security enhancement. This paper is mainly focused on security issues and solutions for wireless communications at the physical layer. It first describes the RSSI-based and channel based wireless authentication methods respectively, and presents an overview of various secrecy capacity analyses of fading channel, MIMO channel and cooperative transmission, and then examines different misbehavior detection methods. Finally it draws conclusions and introduces the direction of our future work.
文摘The last seventy years have witnessed the transition of communication from Shannon’s As an ever-increasing amount of private and confidential information will be delivered over current and future wireless networks,the openness and broadcast natures of the ubiquitous wireless medium are bring concerns and security risks to our society.Specifically,in some certain scenarios that require a high level of security and privacy.
文摘Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway.Ensuring communications in heterogeneous WSNs,is a critical issue that needs to be studied.In this research paper,we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communication.Specifically,two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway.The overall system integrates many different sensors in terms of types,communication protocols,and accuracy,which can be used in many applications in realistic environments such as on land,under water,or in the air.In addition to this,a synchronous management software on ThingSpeak Web server and Blynk app is designed.In the proposed system,the token ring protocol in Zigbee network and polling mechanism in LoRa network is used.The system can operate with a packet loss rate of less than 0.5%when the communication range of the Zigbee network is 630 m,and the communication range of the LoRa network is 3.7 km.On the basis of the digital results collected on the management software,this study proves tremendous improvements in the system performance.
基金supported by the National Natural Science Foundation of China(61674049,U19A2053)State Key Lab of ASIC and System(2019KF003)the Fundamental Research Funds for Central Universities(JZ2019HGTB0092)。
文摘Traditional magnetically coupled resonant wireless power transfer technology uses fixed distances between coils for research,to prevent fluctuations in the receiving voltage,and lead to reduce transmission efficiency.This paper proposes a closed-loop control wireless communication wireless power transfer system with a wearable four-coil structure to stabilize the receiving voltage fluctuation caused by changes in the displacement between the coils.Test results show that the system can provide stable receiving voltage,no matter how the distance between the transmitting coil and the receiving coil is changed.When the transmission distance is 20 mm,the power transfer efficiency of the system can reach 18.5%under the open-loop state,and the stimulus parameters such as the stimulation period and pulse width can be adjusted in real time through the personal computer terminal.