Knowledge of the vertical distribution of aerosols in the free troposphere is important for estimating their impact on climate. In this study, direct observations of the vertical distribution of aerosols in the free t...Knowledge of the vertical distribution of aerosols in the free troposphere is important for estimating their impact on climate. In this study, direct observations of the vertical distribution of aerosols in the free troposphere are made using surface Micro-Pulse Lidar (MPL) measurements. The MPL measurements were made at the Loess Plateau (35.95°N, 104.1°E), which is near the major dust source regions of the Taklimakan and Gobi deserts. The vertical distribution of the MPL backscattering suggested that nondust aerosols floated from ground level to an altitude of approximately 9 km around the source regions. Early morning hours are characterized by a shallow aerosol layer of a few hundred meters thick. As the day progresses, strong convective eddies transport the aero- sols vertically to more than 1500 m.展开更多
As a powerful tool to scan the atmosphere, the I idar can derive visibility values by directly collecting the backscattering laser light from the atmosphere. Simultaneous measurements of atmospheric visibility by Micr...As a powerful tool to scan the atmosphere, the I idar can derive visibility values by directly collecting the backscattering laser light from the atmosphere. Simultaneous measurements of atmospheric visibility by Micro-pulsed lidar (MPL) and a commercial visibility meter (VM) NQ-1 have been performed to evaluate the feasibility of the MPL system designed by the Ocean Remote Sensing Laboratory (ORSL) of the Ocean University of China (OUC) from October 21 2005 to November 21 2005 in the Shilaoren Sightseeing Garden on the Qingdao coast. All the 880 data samples obtained by the two instruments have high correlation coefficients (up to 0.86), which indicates it is feasible to utilize MPL to measure atmospheric visibility.展开更多
The profiles of aerosol extinction coefficients are investigated by micro-pulse lidar(MPL) combined with the meteorological data in the lower troposphere at Meteorological Research Institute(MRI).Japan.Larger extincti...The profiles of aerosol extinction coefficients are investigated by micro-pulse lidar(MPL) combined with the meteorological data in the lower troposphere at Meteorological Research Institute(MRI).Japan.Larger extinction values of aerosol are demonstrated in the nocturnal stable air layer with larger Richardson number,and light wind velocities are favorable for aerosol concentrating in the planetary boundary layer(PBL).But aerosol extinction coefficients show larger values over the altitudes of 2.0 to 5.0km where correspond to higher relative humidity (RH).The tops of PBL identified by the aerosol extinction profiles almost agree with ones by radiosonde data.The diurnal variations of aerosol extinction profiles are clearly displayed, intensive aerosol layers usually are formed over the period of mid-morning to 1400 Loeal Time (LT).then elapse in the cloudless late afternoon and nighttime.Thermal eonvection or turbulent transport from the surfaee probably dominates these temporal and spatial changes of aerosol distribution.展开更多
Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by l...Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.展开更多
山体滑坡会导致生命和财产损失,获取完整的滑坡空间分布图及对易发区域的准确判定有利于指导生产、生活和生态空间优化。在滑坡调查过程中,茂密的植被覆盖使滑坡调查难度加大,机载激光雷达(light detection and ranging,LiDAR)技术的穿...山体滑坡会导致生命和财产损失,获取完整的滑坡空间分布图及对易发区域的准确判定有利于指导生产、生活和生态空间优化。在滑坡调查过程中,茂密的植被覆盖使滑坡调查难度加大,机载激光雷达(light detection and ranging,LiDAR)技术的穿透能力使真实地形特征得以呈现,从而实现植被茂密区滑坡识别。该文通过仿地飞行获取研究区LiDAR点云数据,基于点云数据得到数字高程模型(digital elevation model,DEM),在山体阴影分析、彩色增强显示及三维场景模拟基础上,识别出区域内已有滑坡的位置与规模,经野外核实,滑坡解译精度为86.4%。针对滑坡易发区评价问题,以现有滑坡为样本,首次采用遥感分类思维开展滑坡易发区划定,采用小区域内与滑坡发育有关的高程、坡度和地表起伏度组合成影像,以支持向量机为分类方法,判定出滑坡易发区域,经滑坡检验样本分析,滑坡识别精度为81.91%。研究表明:基于高精度的LiDAR数据及其视觉增强后的图像能识别小型滑坡,采用支持向量机分类法可以准确确定滑坡易发区,为下一步三生空间规划与优化提供依据。展开更多
针对现有基于伪点云的3D目标检测算法精度远低于基于真实激光雷达(Light Detection and ranging,LiDar)点云的3D目标检测,本文研究伪点云重构,并提出适合伪点云的3D目标检测网络.考虑到由图像深度转换得到的伪点云稠密且随深度增大逐渐...针对现有基于伪点云的3D目标检测算法精度远低于基于真实激光雷达(Light Detection and ranging,LiDar)点云的3D目标检测,本文研究伪点云重构,并提出适合伪点云的3D目标检测网络.考虑到由图像深度转换得到的伪点云稠密且随深度增大逐渐稀疏,本文提出深度相关伪点云稀疏化方法,在减少后续计算量的同时保留中远距离更多的有效伪点云,实现伪点云重构.本文提出LiDar点云指导下特征分布趋同与语义关联的3D目标检测网络,在网络训练时引入LiDar点云分支来指导伪点云目标特征的生成,使生成的伪点云特征分布趋同于LiDar点云特征分布,从而降低数据源不一致造成的检测性能损失;针对RPN(Region Proposal Network)网络获取的3D候选框内的伪点云间语义关联不足的问题,设计注意力感知模块,在伪点云特征表示中通过注意力机制嵌入点间的语义关联关系,提升3D目标检测精度.在KITTI 3D目标检测数据集上的实验结果表明:现有的3D目标检测网络采用重构后的伪点云,检测精度提升了2.61%;提出的特征分布趋同与语义关联的3D目标检测网络,将基于伪点云的3D目标检测精度再提升0.57%,相比其他优秀的3D目标检测方法在检测精度上也有提升.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos. 40628005 and 40633017
文摘Knowledge of the vertical distribution of aerosols in the free troposphere is important for estimating their impact on climate. In this study, direct observations of the vertical distribution of aerosols in the free troposphere are made using surface Micro-Pulse Lidar (MPL) measurements. The MPL measurements were made at the Loess Plateau (35.95°N, 104.1°E), which is near the major dust source regions of the Taklimakan and Gobi deserts. The vertical distribution of the MPL backscattering suggested that nondust aerosols floated from ground level to an altitude of approximately 9 km around the source regions. Early morning hours are characterized by a shallow aerosol layer of a few hundred meters thick. As the day progresses, strong convective eddies transport the aero- sols vertically to more than 1500 m.
基金supported by the National Natural Science Foundation of China(Nos.40275009 and 40405005).
文摘As a powerful tool to scan the atmosphere, the I idar can derive visibility values by directly collecting the backscattering laser light from the atmosphere. Simultaneous measurements of atmospheric visibility by Micro-pulsed lidar (MPL) and a commercial visibility meter (VM) NQ-1 have been performed to evaluate the feasibility of the MPL system designed by the Ocean Remote Sensing Laboratory (ORSL) of the Ocean University of China (OUC) from October 21 2005 to November 21 2005 in the Shilaoren Sightseeing Garden on the Qingdao coast. All the 880 data samples obtained by the two instruments have high correlation coefficients (up to 0.86), which indicates it is feasible to utilize MPL to measure atmospheric visibility.
文摘The profiles of aerosol extinction coefficients are investigated by micro-pulse lidar(MPL) combined with the meteorological data in the lower troposphere at Meteorological Research Institute(MRI).Japan.Larger extinction values of aerosol are demonstrated in the nocturnal stable air layer with larger Richardson number,and light wind velocities are favorable for aerosol concentrating in the planetary boundary layer(PBL).But aerosol extinction coefficients show larger values over the altitudes of 2.0 to 5.0km where correspond to higher relative humidity (RH).The tops of PBL identified by the aerosol extinction profiles almost agree with ones by radiosonde data.The diurnal variations of aerosol extinction profiles are clearly displayed, intensive aerosol layers usually are formed over the period of mid-morning to 1400 Loeal Time (LT).then elapse in the cloudless late afternoon and nighttime.Thermal eonvection or turbulent transport from the surfaee probably dominates these temporal and spatial changes of aerosol distribution.
基金supported by the NSFC (42374204, 42004143,42364012)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences (Grant No.YSBR-018)+3 种基金the Scientific Projects of Hainan Province(KJRC2023C05, ZDYF2021GXJS040)the Innovational Fund for Scientific and Technological Personnel of Hainan Provincethe Chinese Meridian ProjectPandeng Program of National Space Science Center,Chinese Academy of Sciences
文摘Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.