According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivale...According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivalent capillary pressure curve(pe)were established to reflect the reservoir heterogeneity.To promote the application of the theoretical models,the Archie's equation was introduced to establish a general model for quantitatively characterizing bi,K,and pei.Compared with the existing models,it is shown that:(1)the existing porosity spectrum model is the same as the general equation of gi;(2)the Ki model can display the permeability spectrum as compared with Purcell's permeability model;(3)the per model is constructed on a theoretical basis and avoids the limitations of existing models that are built only based on the component of porosity spectrum,as compared with the empirical model of capillary pressure curve.The application in the Permian Maokou Formation of Well TsX in the Central Sichuan paleo-uplift shows that the Ф_(i),K_(i),and p_(ci) models can be effectively applied to the identification of reservoir types,calculation of reservoir properties and pore structure parameters,and evaluation of reservoir heterogeneity.展开更多
Aiming at the problem of anisotropy inversion of tight sands, a new method for extracting resistivity anisotropy from array laterolog and micro-resistivity scanning imaging logging is proposed, and also the consistenc...Aiming at the problem of anisotropy inversion of tight sands, a new method for extracting resistivity anisotropy from array laterolog and micro-resistivity scanning imaging logging is proposed, and also the consistency of electric and acoustic anisotropy is discussed. Array laterolog includes resistivity anisotropy information, but numerical simulation shows that drilling fluid invasion has the greatest influence on the response, followed by the relative dip angle θ and electrical anisotropy coefficient λ. A new inversion method to determine ri, Rxo, Rt and λ is developed with the given θ and initial values of invasion radius ri, flushed zone resistivity Rxo, in-situ formation resistivity Rt. Micro-resistivity image can also be used for describing the resistivity distribution information in different directions, and the electrical characteristics from micro-resistivity log in different azimuths, lateral and vertical, can be compared to extract electric anisotropy information. Directional arrangement of mineral particles in tight sands and fracture development are the intrinsic causes of anisotropy, which in turn brings about anisotropy in resistivity and acoustic velocity, so the resistivity anisotropy and acoustic velocity anisotropy are consistent in trends. Analysis of log data of several wells show that the electrical anisotropy and acoustic anisotropy extracted from array laterolog, micro-resistivity imaging and cross-dipole acoustic logs respectively are consistent in trend and magnitude, proving the inversion method is accurate and the anisotropies of different formation physical parameters caused by the intrinsic structure of tight sand reservoir are consistent. This research provides a new idea for evaluating anisotropy of tight sands.展开更多
基金Supported by the National Natural Science Foundation of China(U2003102,41974117)China National Science and Technology Major Project(2016ZX05052001).
文摘According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivalent capillary pressure curve(pe)were established to reflect the reservoir heterogeneity.To promote the application of the theoretical models,the Archie's equation was introduced to establish a general model for quantitatively characterizing bi,K,and pei.Compared with the existing models,it is shown that:(1)the existing porosity spectrum model is the same as the general equation of gi;(2)the Ki model can display the permeability spectrum as compared with Purcell's permeability model;(3)the per model is constructed on a theoretical basis and avoids the limitations of existing models that are built only based on the component of porosity spectrum,as compared with the empirical model of capillary pressure curve.The application in the Permian Maokou Formation of Well TsX in the Central Sichuan paleo-uplift shows that the Ф_(i),K_(i),and p_(ci) models can be effectively applied to the identification of reservoir types,calculation of reservoir properties and pore structure parameters,and evaluation of reservoir heterogeneity.
基金Supported by the Scientific Research and Technological Development Project of CNPC(2019A-3608)
文摘Aiming at the problem of anisotropy inversion of tight sands, a new method for extracting resistivity anisotropy from array laterolog and micro-resistivity scanning imaging logging is proposed, and also the consistency of electric and acoustic anisotropy is discussed. Array laterolog includes resistivity anisotropy information, but numerical simulation shows that drilling fluid invasion has the greatest influence on the response, followed by the relative dip angle θ and electrical anisotropy coefficient λ. A new inversion method to determine ri, Rxo, Rt and λ is developed with the given θ and initial values of invasion radius ri, flushed zone resistivity Rxo, in-situ formation resistivity Rt. Micro-resistivity image can also be used for describing the resistivity distribution information in different directions, and the electrical characteristics from micro-resistivity log in different azimuths, lateral and vertical, can be compared to extract electric anisotropy information. Directional arrangement of mineral particles in tight sands and fracture development are the intrinsic causes of anisotropy, which in turn brings about anisotropy in resistivity and acoustic velocity, so the resistivity anisotropy and acoustic velocity anisotropy are consistent in trends. Analysis of log data of several wells show that the electrical anisotropy and acoustic anisotropy extracted from array laterolog, micro-resistivity imaging and cross-dipole acoustic logs respectively are consistent in trend and magnitude, proving the inversion method is accurate and the anisotropies of different formation physical parameters caused by the intrinsic structure of tight sand reservoir are consistent. This research provides a new idea for evaluating anisotropy of tight sands.