期刊文献+
共找到22,692篇文章
< 1 2 250 >
每页显示 20 50 100
Prediction of intrusive gas pores caused by resin burning in sand core for iron castings
1
作者 Ji-wu Wang Xiao-long Wang +8 位作者 Yu-cheng Sun Yu-hang Huang Xiu-ming Chen Xiong-zhi Wu Na Li Jin-wu Kang Tao Jing Tian-you Huang Hai-liang Yu 《China Foundry》 2025年第1期23-32,共10页
In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occur... In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occurs due to the intrusion of gases generated during the resin burning of the sand core into castings during the casting process.Therefore,a gas generation and flow constitution model was established,in which the gas generation rate is a function of temperature and time,and the flow of gas is controlled by the gas release,conservation,and Darcy's law.The heat transfer and gas flow during casting process was numerically simulated.The dangerous point of cores is firstly identified by a virtual heat transfer method based on the similarity between heat transfer and gas flow in the sand core.The gas pores in castings are predicted by the gas pressure,the viscosity and state of the melt for these dangerous points.Three distinct sand core structures were designed and used for the production of iron castings,and the simulated gas pore results were validated by the obtained castings. 展开更多
关键词 gas pore numerical simulation iron casting sand core RESIN
下载PDF
Improving the wear resistance of plasma electrolytic oxidation(PEO)coatings applied on Mg and its alloys under the addition of nano-and micro-sized additives into the electrolytes:A review 被引量:9
2
作者 Maryam Molaei Kazem Babaei Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1167-1189,共23页
As an efficient surface modification approach,the plasma electrolytic oxidation(PEO)technique can boost the capability of wear protection in Mg and its alloys by applying a hard and thick ceramic coating.In this proce... As an efficient surface modification approach,the plasma electrolytic oxidation(PEO)technique can boost the capability of wear protection in Mg and its alloys by applying a hard and thick ceramic coating.In this procedure,more efficient protection can be acquired via adding additives(in the form of particle,powder,sheet,etc.)into solutions and producing composite coatings.These additives result in more efficient protection against wear via getting stuck in the cracks and pores of coatings and rising the thickness,hardness,and diminishing the porosity size and content.The efficiency of each additive can be changed owing to its intrinsic properties like melting point,size,participation type(reactive,partly reactive,or inert)and potential of zeta.In this review,the effects of distinct additives in nano-and micro-scale size on wear behavior of PEO coatings on Mg and its alloys is going to be reviewed. 展开更多
关键词 Plasma electrolytic oxidation(PEO) Mg alloys Wear behavior Nano-sized additives micro-sized additives
下载PDF
Preparation of micro-sized and uniform spherical Ag powders by novel wet-chemical method 被引量:4
3
作者 安兵 蔡雄辉 +1 位作者 吴丰顺 吴懿平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第8期1550-1554,共5页
A novel wet-chemical method was presented for the preparation of the micro-sized and uniform spherical Ag powders on a mass-production scale.The well-defined particles were synthesized by mixing the iron(II) sulfate h... A novel wet-chemical method was presented for the preparation of the micro-sized and uniform spherical Ag powders on a mass-production scale.The well-defined particles were synthesized by mixing the iron(II) sulfate heptahydrate solution with silver nitrate solution directly by high-speed stirring at room temperature.It is found that a large number of micro-sized and uniform spherical particles with rough surfaces are obtained.The mass ratio of iron(II) sulfate heptahydrate to silver nitrate greatly affects the shape of particles,and when it is relatively low,spherical particles cannot be obtained.The reaction temperature has a great impact on the particle size.As the reaction temperature increases from 8 to 15°C,the mean diameter of particles decreases from 3.5 to 1.6 μm.The additive n-methyl-2-pyrrolidone improves the surface smoothness and compactness of the particles while the particle size is kept unchanged.Scanning electron microscopy,X-ray diffractometry and energy dispersive X-ray analysis were used to characterize the particle products. 展开更多
关键词 silver powder wet-chemical method iron(Ⅱ)sulfate heptahydrate micro-sized powder
下载PDF
In-plane micro-sized energy storage devices:From device fabrication to integration and intelligent designs 被引量:2
4
作者 Songshan Bi Hongmei Cao +2 位作者 Rui Wang Fang Wan Zhiqiang Niu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期25-39,I0002,共16页
The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(ME... The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(MESDs),which are composed of interdigitated electrodes on a single chip,have aroused particular attentions since they could be easily integrated with other miniaturized electronics,reducing the complexity of overall chip design via removing complex interconnections with bulky power sources.This review highlights the achievements in the device fabrication of in-plane MESDs,as well as their integration and intelligent designs.We also discussed the current challenges and future perspectives for the development of in-plane MESDs. 展开更多
关键词 micro-sized energy storage devices Micro-batteries micro-supercapacitors INTEGRATION Intelligent designs
下载PDF
Experimental Study on Heat Transfer and Pressure Drop of Micro-Sized Tube Heat Exchanger 被引量:2
5
作者 王秋香 戴传山 《Transactions of Tianjin University》 EI CAS 2014年第1期21-26,共6页
A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of t... A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional. 展开更多
关键词 micro-sized tube heat exchanger heat transfer pressure drop entrance effect
下载PDF
Silk fibroin-based biopolymer composite binders with gradient binding energy and strong adhesion force for high-performance micro-sized silicon anodes 被引量:1
6
作者 Panpan Dong Xiahui Zhang +2 位作者 Julio Zamora John McCloy Min-Kyu Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期442-451,I0010,共11页
Micro-sized silicon anodes have shown much promise in large-scale industrial production of high-energy lithium batteries.However,large volume change(>300%)of silicon anodes causes severe particle pulverization and ... Micro-sized silicon anodes have shown much promise in large-scale industrial production of high-energy lithium batteries.However,large volume change(>300%)of silicon anodes causes severe particle pulverization and the formation of unstable solid electrolyte interphases during cycling,leading to rapid capacity decay and short cycle life of lithium-ion batteries.When addressing such issues,binder plays key roles in obtaining good structural integrity of silicon anodes.Herein,we report a biopolymer composite binder composed of rigid poly(acrylic acid)(PAA)and flexible silk fibroin(SF)tailored for micro-sized silicon anodes.The PAA/SF binder shows robust gradient binding energy via chemical interactions between carboxyl and amide groups,which can effectively accommodate large volume change of silicon.This PAA/SF binder also shows much stronger adhesion force and improved binding towards high-surface/defective carbon additives,resulting in better electrochemical stability and higher coulombic efficiency,than conventional PAA binder.As such,micro-sized silicon/carbon anodes fabricated with novel PAA/SF binder exhibit much better cyclability(up to 500 cycles at 0.5 C)and enhanced rate capability compared with conventional PAA-based anodes.This work provides new insights into the design of functional binders for high-capacity electrodes suffering from large volume change for the development of nextgeneration lithium batteries. 展开更多
关键词 micro-sized silicon BINDER Silk fbroin Strong adhesion force Rate capability CYCLABILITY
下载PDF
ULTRASONIC SEPARATION OF MICRO-SIZED INCLUSIONS IN MOLTEN METAL
7
作者 X.Q. Bai and J.C. He Key Laboratory of National Education Ministry for Electromagnetic Processing of Materials, Northeastern University, Shenyang 110004, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第5期375-379,共5页
The coagulation time and position of micro-sized non-metallic inclusions in molten metal during ultrasonic separation process were investigated, and the motion course of micro-sized non-metallic inclusions in an ultra... The coagulation time and position of micro-sized non-metallic inclusions in molten metal during ultrasonic separation process were investigated, and the motion course of micro-sized non-metallic inclusions in an ultrasonic standing wave field was numerically simulated. The results of theoretical analysis and numerical simulation show that the movement of inclusions depends on the balance between the acoustic radiation force, effective buoyancy force and viscous drag force. It is presented that micro-sized inclusions, agglomerated at antinode-planes may be removed further with horizon tal ultrasound.`` 展开更多
关键词 ULTRASOUND molten metal micro-sized non-metallic inclusion numerical simulation process parameter
下载PDF
Experiments and computer simulation analysis of impact behaviors of micro-sized abrasive in waterjet cutting of thin multiple layered materials
8
作者 Jung-Han LEE Kang-Su PARK +2 位作者 Myung Chang KANG Bo Sik KANG Bo Sung SHIN 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期864-869,共6页
The abrasive waterjet (AWJ) is now widely used in the advanced cutting processes of polymers,metals,glass,ceramics and composite materials like thin multiple-layered material (TMM).Various research and development eff... The abrasive waterjet (AWJ) is now widely used in the advanced cutting processes of polymers,metals,glass,ceramics and composite materials like thin multiple-layered material (TMM).Various research and development efforts have recently been made to understand the science of AWJ.However,the interaction mechanism between a workpiece and high-velocity abrasive particles still remains a complicated problem.In this work,the material removal mechanisms of AWJ such as micro penetration and micro dent were experimentally investigated.In addition,a new computer simulation model considering high strain rate effect was proposed to understand the micro impact behavior of high-velocity micro-sized abrasives in AWJ cutting. 展开更多
关键词 ABRASIVE waterjet THIN MULTIPLE layered materials micro-sized ABRASIVE MICRO PENETRATION MICRO DENT
下载PDF
Investigation of pore geometry influence on fluid flow in heterogeneous porous media:A pore-scale study 被引量:2
9
作者 Ramin Soltanmohammadi Shohreh Iraji +3 位作者 Tales Rodrigues de Almeida Mateus Basso Eddy Ruidiaz Munoz Alexandre Campane Vidal 《Energy Geoscience》 EI 2024年第1期72-88,共17页
Brazilian pre-salt reservoirs are renowned for their intricate pore networks and vuggy nature,posing significant challenges in modeling and simulating fluid flow within these carbonate reservoirs.Despite possessing ex... Brazilian pre-salt reservoirs are renowned for their intricate pore networks and vuggy nature,posing significant challenges in modeling and simulating fluid flow within these carbonate reservoirs.Despite possessing excellent petrophysical properties,such as high porosity and permeability,these reservoirs typically exhibit a notably low recovery factor,sometimes falling below 10%.Previous research has indicated that various enhanced oil recovery(EOR)methods,such as water alternating gas(WAG),can substantially augment the recovery factor in pre-salt reservoirs,resulting in improvements of up to 20%.Nevertheless,the fluid flow mechanism within Brazilian carbonate reservoirs,characterized by complex pore geometry,remains unclear.Our study examines the behavior of fluid flow in a similar heterogeneous porous material,utilizing a plug sample obtained from a vugular segment of a Brazilian stromatolite outcrop,known to share analogies with certain pre-salt reservoirs.We conducted single-phase and multi-phase core flooding experiments,complemented by medical-CT scanning,to generate flow streamlines and evaluate the efficiency of water flooding.Subsequently,micro-CT scanning of the core sample was performed,and two cross-sections from horizontal and vertical plates were constructed.These cross-sections were then employed as geometries in a numerical simulator,enabling us to investigate the impact of pore geometry on fluid flow.Analysis of the pore-scale modeling and experimental data unveiled that the presence of dead-end pores and vugs results in a significant portion of the fluid remaining stagnant within these regions.Consequently,the injected fluid exhibits channeling-like behavior,leading to rapid breakthrough and low areal swept efficiency.Additionally,the numerical simulation results demonstrated that,irrespective of the size of the dead-end regions,the pressure variation within the dead-end vugs and pores is negligible.Despite the stromatolite's favorable petrophysical properties,including relatively high porosity and permeability,as well as the presence of interconnected large vugs,the recovery factor during water flooding remained low due to early breakthrough.These findings align with field data obtained from pre-salt reservoirs,providing an explanation for the observed low recovery factor during water flooding in such reservoirs. 展开更多
关键词 pore-scale modeling pore geometry Flow streamlines Computational modeling Digital rock analysis
下载PDF
An adaptive physics-informed deep learning method for pore pressure prediction using seismic data 被引量:2
10
作者 Xin Zhang Yun-Hu Lu +2 位作者 Yan Jin Mian Chen Bo Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期885-902,共18页
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g... Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data. 展开更多
关键词 pore pressure prediction Seismic data 1D convolution pyramid pooling Adaptive physics-informed loss function High generalization capability
下载PDF
Experimental investigation on coal pore-fracture variation and fractal characteristics synergistically affected by solvents for improving clean gas extraction 被引量:1
11
作者 Feilin Han Sheng Xue +3 位作者 Chunshan Zheng Zhongwei Chen Guofu Li Bingyou Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期413-425,共13页
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal... Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology. 展开更多
关键词 Clean gas extraction Chemical solvent Experimental investigation Fractal characteristics pore fracture
下载PDF
Free radicals trigger the closure of open pores in lignin-derived hard carbons toward improved sodium-storage capacity 被引量:1
12
作者 Wen-Jun Ji Zong-Lin Yi +8 位作者 Ming-Xin Song Xiao-Qian Guo Yi-Lin Wang Yi-Xuan Mao Fang-Yuan Su Jing-Peng Chen Xian-Xian Wei Li-Jing Xie Cheng-Meng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期551-559,共9页
The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming ag... The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors. 展开更多
关键词 Hard carbon Chemical activation Free radical SELF-HEALING Closed pores Sodium ion batteries
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis 被引量:1
13
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 Real-time monitoring pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
Evolution of pore systems in low-maturity oil shales during thermal upgrading--Quantified by dynamic SEM and machine learning 被引量:1
14
作者 Jun Liu Xue Bai Derek Elsworth 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1739-1750,共12页
In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the... In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating. 展开更多
关键词 Low-maturity oil shale pore elongation Organic matter pyrolysis In-situthermal upgrading Scanning electron microscopy(SEM) Machine learning
下载PDF
Study on the Development of Small and Micro-sized Enterprises in Hubei Province
15
作者 Xiuping LI 《International Journal of Technology Management》 2014年第5期68-70,共3页
The development of small and micro-sized enterprises is of vital significance for the steady and rapid social economy. In recent years, the developing environment for the small and micro-sized enterprises in Hubei pro... The development of small and micro-sized enterprises is of vital significance for the steady and rapid social economy. In recent years, the developing environment for the small and micro-sized enterprises in Hubei province has become increasingly severe, and the problems such as high management cost, high taxes and fees, financing difficulties, and labor shortages of the small and micro-sized enterprises have been more obvious, so that the further development, transformation, and upgrading of the small and micro-sized enterprises are severely restricted. In order to promote the development of the small and micro-sized enterprises, the developing environment for the small and micro-sized enterprises should be further optimized, the tax environment for supporting the development of the small and micro-sized enterprises should be well improved, the financing system should be promoted to be sound, the industrial structure should be actively adjusted, and also the development quality should be increased. 展开更多
关键词 Small and micro-sized Enterprises Development Environment TAX FINANCING
下载PDF
Discussion on the problems and countermeasures in the financial management of the small and micro-sized enterprises
16
作者 Chen Pei 《International English Education Research》 2015年第2期13-18,共6页
The survival problems are always the core problems of the small and micro-sized enterprises in our country, and the financial management, as the important key factor influencing the small and micro-sized enterprises, ... The survival problems are always the core problems of the small and micro-sized enterprises in our country, and the financial management, as the important key factor influencing the small and micro-sized enterprises, has more and more impact on its survival and development. However, the important problem existing presently is that the significance of the financial management is mostly ignored in the small and micro-sized enterprises, pursuing the short-term economic benefit blindly, which decreases the risk resistance of the small and micro-sized enterprises severely, so that a mass of the small and micro-sized enterprises with poor survivability and extremely short life cycle are occurred. This text analyzes the problems existing in the financial management of the small and micro-sized enterprises around the above several prominent problems, and discusses the corresponding suggestions to promote the sound development of the small and micro-sized enterprises in our country. 展开更多
关键词 small and micro-sized enterprises financial management problems and countermeasures
下载PDF
The impact of heterogeneity and pore network characteristics on single and multi-phase fluid propagation in complex porous media:An X-ray computed tomography study
17
作者 Shohreh Iraji Tales Rodrigues De Almeida +2 位作者 Eddy Ruidiaz Munoz Mateus Basso Alexandre Campane Vidal 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1719-1738,共20页
This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifica... This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifically,high-resolution or micro X-ray computed tomography(CT)imaging techniques were utilized to examine outcrop stromatolite samples of the Lagoa Salgada,considered flow analogous to the Brazilian Pre-salt carbonate reservoirs.The petrophysical results comprised two distinct stromatolite depositional facies,the columnar and the fine-grained facies.By generating pore network model(PNM),the study quantified the relationship between key features of the porous system,including pore and throat radius,throat length,coordination number,shape factor,and pore volume.The study found that the less dense pore network of the columnar sample is typically characterized by larger pores and wider and longer throats but with a weaker connection of throats to pores.Both facies exhibited less variability in the radius of the pores and throats in comparison to throat length.Additionally,a series of core flooding experiments coupled with medical CT scanning was designed and conducted in the plug samples to assess flow propagation and saturation fields.The study revealed that the heterogeneity and presence of disconnected or dead-end pores significantly impacted the flow patterns and saturation.Two-phase flow patterns and oil saturation distribution reveal a preferential and heterogeneous displacement that mainly swept displaced fluid in some regions of plugs and bypassed it in others.The relation between saturation profiles,porosity profiles,and the number of fluid flow patterns for the samples was evident.Only for the columnar plug sample was the enhancement in recovery factor after shifting to lower salinity water injection(SB)observed. 展开更多
关键词 pore network model Heterogeneous porous media Flow patterns Dead-end pores
下载PDF
Modeling of multiphase flow in low permeability porous media:Effect of wettability and pore structure properties
18
作者 Xiangjie Qin Yuxuan Xia +3 位作者 Juncheng Qiao Jiaheng Chen Jianhui Zeng Jianchao Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1127-1139,共13页
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef... Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery. 展开更多
关键词 Low permeability porous media Water-oil flow WETTABILITY pore structures Dual porosity pore network model(PNM) Free surface model
下载PDF
Spatio-temporal evolution of pore and fracture structures in coal induced by initial damage and creep behavior:A real-time NMR-based approach
19
作者 Lei Zhang Yimeng Wang +5 位作者 Mingzhong Gao Wenhao Jia Senlin Xie Wei Hou Xiangyu Wang Hao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1409-1425,共17页
Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coa... Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coal resources.This study conducts cyclic loading-unloading and creep experiments on coal using a low-field nuclear magnetic resonance(NMR)experimental apparatus which is equipped with mechanical loading units,enabling real-time monitoring the T2spectrum.The experiments indicated that cyclic loading-unloading stress paths initiate internal damage within coal samples.Under identical creep stress conditions,coal samples with more initial damages had more substantial instantaneous deformation and creep deformation during the creep process.After undergoing nearly 35 h of staged creep,the total strains for coal samples CC01,CC02,and CC03 reach 2.160%,2.261%,and 2.282%,respectively.In the creep stage,the peak area ratio of seepage pores and microfractures(SPM)gradually diminishes.A higher degree of initial damage leads to a more pronounced compaction trend in the SPM of coal samples.Considering the porosity evolution of SPM during the creep process,this study proposes a novel fractional derivative model for the porosity evolution of SPM.The efficacy of the proposed model in predicting porosity evolution of SPM is substantiated through experimental validation.Furthermore,an analysis of the impact mechanisms on key parameters in the model was carried out. 展开更多
关键词 COAL Microscopic pore and fracture structures Initial damage Creep behavior Fractional porosity model of seepage pores and microfractures Nuclear magnetic resonance
下载PDF
Concise extraction and characterization of the pore-throat network in unconventional hydrocarbon reservoirs: A new perspective
20
作者 Shu-Heng Du Yong-Min Shi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1474-1487,共14页
In this study,a new image-based method for the extraction and characterization of pore-throat network for unconventional hydrocarbon storage and exploitation is proposed.“Pore-throat solidity”,which is analogous to ... In this study,a new image-based method for the extraction and characterization of pore-throat network for unconventional hydrocarbon storage and exploitation is proposed.“Pore-throat solidity”,which is analogous to particle solidity,and a new method for automatic identification of pores and throats in tight sandstone oil reservoirs are introduced.Additionally,the“pore-throat combination”and“pure pore”are defined and distinguished by drawing the cumulative probability curve of the pore-throat solidity and by selecting an appropriate cutoff point.When the discrete grid set is recognized as a pore-throat combination,Legendre ellipse fitting and minimum Feret diameter are used.When the pore and throat grid sets are identified as pure pores,the pore diameter can be directly calculated.Using the new method,the analytical results for the physical parameters and pore radius agree well with most prior studies.The results comparing the maximum ball and the new model could also prove the accuracy of the latter's in micro and nano scales.The new model provides a more practical theoretical basis and a new calculation method for the rapid and accurate evaluation of the complex processes of oil migration. 展开更多
关键词 Hydrocarbon exploitation pore THROAT Porous media Identification
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部