This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiat...This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.展开更多
End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerizatio...End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerization systems,it is highly challenging to achieve such end-functionalizations,because most of polydienyl chains are capped withη3-allyl-Nd moiety during the end of polymerization,which shows very poor reactivity with nucleophile compounds.We launched a new diene polymerization strategy calling coordinative chain transfer polymerization(CCTP)[1].In such a system,all the polydienyl chains are capped withη1-allyl-Al moieties,which reveal greater reactivity with cyclic esters and epoxide compounds,providing an effective manner to prepare polydiene-polyester amphiphilic block copolymers.Inspired by such findings,we now show herein how such types of chain-ends react with isot-hiocyanate to demonstrate an efficient in-situ manner to access end-functionalized polydienes by using CCTP.展开更多
Neodymium(Nd)-based catalyst in butadiene(Bd)polymerization has drawn interests due to its availability in affording higher cis-1,4-unit selectivity than transition metal(Ti,Co,Ni,etc.)-based catalysts[1-2].Such outst...Neodymium(Nd)-based catalyst in butadiene(Bd)polymerization has drawn interests due to its availability in affording higher cis-1,4-unit selectivity than transition metal(Ti,Co,Ni,etc.)-based catalysts[1-2].Such outstanding high cis-1,4-unit selecti-vity is hypothetically originated from the presence of 4 f orbitals,that can participate in monomer coordination and thereby govern subsequent enchainment manners.This unique characteristic also renders the active species highly susceptible to Lewis bases,and may impact the overall selectivity as well as polyme-rization behavior after coordination.Nevertheless,it is still a virgin area in such a field,and the influence of Lewis bases on Nd-based diene polymerizations is still a black box.Based on this consideration,how nitrogen-containing donors(D)impacts the overall behaviors of Nd-mediated Bd polymerizations is disclosed.展开更多
α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were ...α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were designed and synthesized for olefin polymerization.In this work,we synthesized a series of asymmetricα-diimide nickel complexes with different steric hindrances and used them for ethylene polymerization.These nickel catalysts have high ethylene polymerization activity,up to 6.51×10^(6)g·mol^(−1)·h^(−1),and the prepared polyethylene has a moderate melting point and high molecular weight(up to 38.2×10^(4)g·mol^(−1)),with a branching density distribution between 7 and 94 branches per 1000 carbons.More importantly,the polyethylene prepared by these catalysts exhibits excellent tensile properties,with strain and stress reaching 800%and 30 MPa,respectively.展开更多
The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly co...The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.展开更多
Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre...Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.展开更多
For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of sol...For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of solvent on the mechanism and kinetics of LAP was revealed through a strategy combining density functional theory(DFT)calculations and kinetic modeling.In terms of mechanism,it is found that the stronger the solvent polarity,the more electrons transfer from initiator to solvent through detailed energy decomposition analysis of electrostatic interactions between initiator and solvent molecules.Furthermore,we also found that the stronger the solvent polarity,the higher the monomer initiation energy barrier and the smaller the initiation rate coefficient.Counterintuitively,initiation is more favorable at lower temperatures based on the calculated results ofΔG_(TS).Finally,the kinetic characteristics in different solvents were further examined by kinetic modeling.It is found that in benzene and n-pentane,the polymerization rate exhibits first-order kinetics.While,slow initiation and fast propagation were observed in tetrahydrofuran(THF)due to the slow free ion formation rate,leading to a deviation from first-order kinetics.展开更多
The catalysis of olefin polymerization through the chain-walking process is a subject of great interest. In this contribution, the successful synthesis of a Brookhart-type unsymmetrical α-diimine nickel catalyst Ni, ...The catalysis of olefin polymerization through the chain-walking process is a subject of great interest. In this contribution, the successful synthesis of a Brookhart-type unsymmetrical α-diimine nickel catalyst Ni, which contains both dibenzhydryl and phenyl groups, was determined by X-ray crystallography. The compound has a pseudo-tetrahedral geometry at the Ni center, showing pseudo-C2-symmetry. Upon activation with modified methylaluminoxane (MMAO), Ni1 exhibits high catalytic activity up to 1.02 × 107 g PE (mol Ni h)−1 toward ethylene polymerization, enabling the synthesis of high molecular weight branched polyethylene. The molecular weights and branching densities could be tuned over a very wide range. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature. The branching densities were decreased with increasing the polymerization temperature.展开更多
A series of homo and copolymers of styrene (ST) and 2-hydroxyethyl methacrylate (HEMA) in three different media (bulk, tetrahydrofuran, and benzene) have been investigated by free radical polymerization method. The sa...A series of homo and copolymers of styrene (ST) and 2-hydroxyethyl methacrylate (HEMA) in three different media (bulk, tetrahydrofuran, and benzene) have been investigated by free radical polymerization method. The samples obtained from the synthesis were characterized by Fourier Transform-Infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The results show that the synthesis of the polymers is more feasible under neat conditions rather than solvent directed reaction. Moreover, the DSC data shows that the polystyrene obtained is amorphous in nature and therefore displayed only a glass transition signal rather than crystallization and melting peaks. In addition, this study indicates that homolopolymerization of styrene via free radical polymerization tends to be preferable in less polar solvents like THF than in non-polar solvents like benzene. Benzene might destabilize the formation of the reactive radicals leading to the formation of the products. In summary, the homolpolymerization of styrene is more feasible than the homopolymerization 2-hydroxyethyl methacrylate under the experimental setup used. Styrene is more reactive than 2-hydroxyethyl methacrylate than free radical polymerization reaction due in part of the generation of the benzylic radical intermediate which is more stable leading to the formation of products than alkyl radical which are less stable. Furthermore, polymerization of styrene under neat conditions is preferable in solvent-assisted environments. The choice of solvent for the synthesis of these polymers is crucial and therefore the selection of solvent that leads to the formation of a more stable reaction intermediate is more favorable. It is worth noting that the structure of the proposed copolymer consists of a highly polar and hydrophilic monomer, 2-hydroxyethyl methacrylate and a highly non-polar and hydrophobic monomer, styrene. These functionalities constitute an amphiphilic copolymer with diverse characteristics. A plausible explanation underlying our observations is that the reaction conditions employed in the synthesis of these copolymers might not be the right route required under free radical polymerization.展开更多
The elementary reactions of propylene polymerization catalyzed by conventional Ziegler-Natta catalysts was proposed according to the comprehensive view and without considering the effect of any impurity in the materia...The elementary reactions of propylene polymerization catalyzed by conventional Ziegler-Natta catalysts was proposed according to the comprehensive view and without considering the effect of any impurity in the material on propylene polymerization. The Monte Carlo simulation technique was employed to investigate the kinetics of propylene polymerization in order to determine the validity of the stationary state assumption and the effects of the polymerization temperature on the polymerization. The simulated total amount of active species, which only increases quickly at the beginning of the polymerization, indicates that the stationary state assumption in the studied system is valid. Moreover, significant effects of polymerization temperature on the polymerization conversion, and the molecular weight and its distribution were also analyzed. The simulated results show that the consumption rate of propylene increases with the increase of polymerization temperature; the maximum values of the number-average degree of polymerization are constant at different polymerization temperatures, however, the peak appears earlier with the higher temperature; as the polymerization temperature increases, the average molecular weight decreases and the molecular weight distribution changes greatly.展开更多
Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz...Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.展开更多
The polymerization of styrene is monitored by pyrene excimer formation. The ratio of monomer to excimer intensities ( I m/ I e) of pyrene increases as polymerization proceeds. The increase of I m/ I e...The polymerization of styrene is monitored by pyrene excimer formation. The ratio of monomer to excimer intensities ( I m/ I e) of pyrene increases as polymerization proceeds. The increase of I m/ I e is ascribed to the increase of microviscosity surrounding the probes forming excimer during polymerization. The linear relationship between the changing rate of I m/ I e and the polymerization rate of styrene is obtained. Therefore, I m/ I e may be used to monitor the progress of the polymerization of styrene.展开更多
The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction a...The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.展开更多
The gel polymer electrolyte containing N-propyl, methylpyrrolidinium bis((trifiuoromethyl) sulfonyl)imide (PYR13TFSI) with better performance is prepared by radical polymerization method. The interface status be...The gel polymer electrolyte containing N-propyl, methylpyrrolidinium bis((trifiuoromethyl) sulfonyl)imide (PYR13TFSI) with better performance is prepared by radical polymerization method. The interface status between the LiFePO4 electrode and the electrolyte is characterized by a scanning electron microscope and X-ray photoelectron spectroscopy (XPS). There is a layer of membrane on the gel electrolyte and perfect shell membranes on the surface of active LiFePO4 cluster, on the other hand, N and S photoelectron signals are observed in XPS spectra after charge-discharge cycles. The results show that the ionic liquids and unpolymerized methyl methacrylate incorporate into the electrode surface and form the SEI membrane with Li ion and electrons while the gel electrolyte contacts with the electrode. The formation process of the SEI membrane needs at least three cycles, the discharge capacity increases as the SEI membrane becomes sufficiently thick, which blocks further electron transfer, and the system may approach steady state. The performance of cell with ionic liquid gel polymer electrolyte is measured at different rate. The cells retain 132 mAh/g at 0.2 C, 128 mAh/g at 0.5 C, and 120 mAh/g at 1.0 C after 30 cycles with charge-discharge efficiency of ca. 98% at every rate.展开更多
An improved method for preparing melamine cyanurate (MCA) based flame retardant polyamide 6 (FRPA6) materials has been proposed. This processing method, i.e., improved in situ polymerization, was used to synthesiz...An improved method for preparing melamine cyanurate (MCA) based flame retardant polyamide 6 (FRPA6) materials has been proposed. This processing method, i.e., improved in situ polymerization, was used to synthesize flame retardant PA6. In situ formed MCA nanoparticles were supposed to be linked to PA6 chains in the ε-caprolactam hydrolytic polymerization system to obtain startype polymers for the first time. Through TEM photographs, it can be found that the in situ formed MCA nanoparticles with diametric size of less than 50 nm, are nanoscaled, highly uniformly dispersed in the PA6 matrix. Synthesized flame retardant PA6 have good fire performance which can achieve UL-94 V-0 rating at 1.6 mm thickness with the presence of 7.34 wt.% MCA in the matrix.展开更多
Anionic polyacrylamide dispersions were prepared by dispersion polymerization in an aqueous salt medium, using acrylamide(AM) and acrylic acid(AA) as monomers and anionic polyelectrolytes as stabilizer. Effects of...Anionic polyacrylamide dispersions were prepared by dispersion polymerization in an aqueous salt medium, using acrylamide(AM) and acrylic acid(AA) as monomers and anionic polyelectrolytes as stabilizer. Effects of salt concentration, and molecular weight and concentration of stabilizers on the stability of the dispersions were investigated using a HAAKE rheometer and optical microscopy. The results showed that stable anionic polyacrylamide dispersions, consisting of smooth, spherical, polydisperse particles, could be obtained under the conditions of salt concentration ranging from 26 wt% to 30 wt%, concentration of stabilizers from 1.2 wt% to 1.8 wt%, and intrinsic viscosity of stabilizers from 2.98 dL·g^-1 to 3.74 dL·g^-1. The apparent viscosity of the stable dispersions changed very little with the shear rate, showing Newton fluid behavior.展开更多
Monodisperse micron-sized polyacrylamide (PAM) particles with a regular shape have been successfully prepared through dispersion polymerization of the monomer using a rotary reactor. FTIR and NMR spectroscopic resul...Monodisperse micron-sized polyacrylamide (PAM) particles with a regular shape have been successfully prepared through dispersion polymerization of the monomer using a rotary reactor. FTIR and NMR spectroscopic results demonstrated the formation of PAM. POM and TEM observations revealed that PAM particles had a regular shape and good dispersity. A thick layer of surfactant (PVP) still existed on PAM particles after multiple centrifugation and ultrasonic re-dispersion in ethanol, which indicates a strong interaction between PVP and PAM. The effects of various polymerization factors on the average size of PAM particles have also been studied.展开更多
A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecula...A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecular weight of the polyethylene produced was Mn = 1.29x10(5). about 3-4 times those of corresponding homogeneous zirconocenes. The polymer-supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features, such as adaptable to gas phase and slurry processes: easy to prepare in low cost: relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.展开更多
The cationic polymerizations of isobutylene (IB) coinitiated by AlCl3 were carried out in solvent mixture of nhexane/methylene dichloride (n-hex/CH2Cl2) of 60/40 V/V in the presence of ethyl benzoate (EB) at var...The cationic polymerizations of isobutylene (IB) coinitiated by AlCl3 were carried out in solvent mixture of nhexane/methylene dichloride (n-hex/CH2Cl2) of 60/40 V/V in the presence of ethyl benzoate (EB) at various temperatures range from -80℃ to -30℃. The effects of EB concentration ([EB]) and polymerization temperature on monomer conversion, weight-average molecular weight (Mw) and molecular weight distribution (MWD, Mw/Mn) of polyisobutylene (PIB) products were investigated. The rate of polymerization decreased while Mw of PIB products increased with increasing [EB]. The polymers with high molecular weight could be prepared in the presence of a suitable amount of EB. Significantly, the polymers with high Mw of 80.2 × 10^4 and 65.4 × 10^4 could be produced at -80℃ and -70℃ at [EB] = 0.24 × 10^3 mol/L respectively, which were much higher than that (Mw = 57.9 × 10^4) of PIB prepared at -100℃ in the absence ofEB. A simple but effective method for preparing the high molecular weight polyisobutylenes was developed in this work. It has been also found that the activation energy for propagation (Ep) depended on the polymerization temperature range in the presence of EB. An obvious inflection of the linear plots of lnXn versus 1/Tp occurred at the temperature range from -60℃ to -50℃ at four different concentrations of EB from 0.19 × 10^3 mol/L to 0.33× 10^3 tool/L, and thus the inflection temperature (Tinf) was in the range of -60℃ to -50℃. When [EB] was in the range of 0.24 × 10^3 mol/L to 0.33× 10^3 mol/L, Ep was determined to be around -12 kJ/mol when the polymerization was carried out at temperatures from -80℃ to Tinf and to be around -28 kJ/mol at temperatures from Tinf to -15℃ respectively.展开更多
基金funded by the National Key Research and Development Program of China(no.2020YFC1909604)Shenzhen Key Projects of Technological Research(JSGG20200925145800001)Shenzhen Basic Research Project(no.JCYJ20190808145203535).
文摘This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.
基金Supported by PetroChina Company Limited(2020 B-2711)。
文摘End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerization systems,it is highly challenging to achieve such end-functionalizations,because most of polydienyl chains are capped withη3-allyl-Nd moiety during the end of polymerization,which shows very poor reactivity with nucleophile compounds.We launched a new diene polymerization strategy calling coordinative chain transfer polymerization(CCTP)[1].In such a system,all the polydienyl chains are capped withη1-allyl-Al moieties,which reveal greater reactivity with cyclic esters and epoxide compounds,providing an effective manner to prepare polydiene-polyester amphiphilic block copolymers.Inspired by such findings,we now show herein how such types of chain-ends react with isot-hiocyanate to demonstrate an efficient in-situ manner to access end-functionalized polydienes by using CCTP.
基金Supported by PetroChina Company Limited Project (2020 B-2711)。
文摘Neodymium(Nd)-based catalyst in butadiene(Bd)polymerization has drawn interests due to its availability in affording higher cis-1,4-unit selectivity than transition metal(Ti,Co,Ni,etc.)-based catalysts[1-2].Such outstanding high cis-1,4-unit selecti-vity is hypothetically originated from the presence of 4 f orbitals,that can participate in monomer coordination and thereby govern subsequent enchainment manners.This unique characteristic also renders the active species highly susceptible to Lewis bases,and may impact the overall selectivity as well as polyme-rization behavior after coordination.Nevertheless,it is still a virgin area in such a field,and the influence of Lewis bases on Nd-based diene polymerizations is still a black box.Based on this consideration,how nitrogen-containing donors(D)impacts the overall behaviors of Nd-mediated Bd polymerizations is disclosed.
基金supported by the National Natural Science Foundation of China(52203016)the USTC Research Funds of the Double First-Class Initiative(YD9990002018)+3 种基金the Overseas Students Innovation and Entrepreneurship Support Program Project of Anhui Province(2021LCX022)the Key R&D Projects in Anhui Province(2022i01020012)the Natural Science Foundation of Hefei(2022039)the Excellent Research and Innovation Team Project of Anhui Province(2022AH010001).
文摘α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were designed and synthesized for olefin polymerization.In this work,we synthesized a series of asymmetricα-diimide nickel complexes with different steric hindrances and used them for ethylene polymerization.These nickel catalysts have high ethylene polymerization activity,up to 6.51×10^(6)g·mol^(−1)·h^(−1),and the prepared polyethylene has a moderate melting point and high molecular weight(up to 38.2×10^(4)g·mol^(−1)),with a branching density distribution between 7 and 94 branches per 1000 carbons.More importantly,the polyethylene prepared by these catalysts exhibits excellent tensile properties,with strain and stress reaching 800%and 30 MPa,respectively.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.52373047,No.52302106)the Sichuan Youth Science and Technology Innovation Research Team Project(No.2022JDTD0012)+2 种基金the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(No.2020SCUNG203)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0418)the Program for State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-3-10)。
文摘The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.
基金support from the National Research Foundation (NRF) Singapore, under its Competitive Research Programme Award NRF-CRP20-20170004 and NRF Investigatorship Award NRF-NRFI06-20200005MTC Programmatic Grant M21J9b0085, as well as the Lite-On Project RS-INDUS-00090+5 种基金support from Australian Research Council (DE220101085, DP220102152)grants from German Research Foundation (SCHM2655/15-1, SCHM2655/21-1)Lee-Lucas Chair in Physics and funding by the Australian Research Council DP220102152financial support from the National Natural Science Foundation of China (Grant No. 62275078)Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ20020)Shenzhen Science and Technology Program (Grant No. JCYJ20220530160405013)
文摘Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.
基金financially supported by the National Natural Science Foundation of China(U21A20313,22222807)。
文摘For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of solvent on the mechanism and kinetics of LAP was revealed through a strategy combining density functional theory(DFT)calculations and kinetic modeling.In terms of mechanism,it is found that the stronger the solvent polarity,the more electrons transfer from initiator to solvent through detailed energy decomposition analysis of electrostatic interactions between initiator and solvent molecules.Furthermore,we also found that the stronger the solvent polarity,the higher the monomer initiation energy barrier and the smaller the initiation rate coefficient.Counterintuitively,initiation is more favorable at lower temperatures based on the calculated results ofΔG_(TS).Finally,the kinetic characteristics in different solvents were further examined by kinetic modeling.It is found that in benzene and n-pentane,the polymerization rate exhibits first-order kinetics.While,slow initiation and fast propagation were observed in tetrahydrofuran(THF)due to the slow free ion formation rate,leading to a deviation from first-order kinetics.
文摘The catalysis of olefin polymerization through the chain-walking process is a subject of great interest. In this contribution, the successful synthesis of a Brookhart-type unsymmetrical α-diimine nickel catalyst Ni, which contains both dibenzhydryl and phenyl groups, was determined by X-ray crystallography. The compound has a pseudo-tetrahedral geometry at the Ni center, showing pseudo-C2-symmetry. Upon activation with modified methylaluminoxane (MMAO), Ni1 exhibits high catalytic activity up to 1.02 × 107 g PE (mol Ni h)−1 toward ethylene polymerization, enabling the synthesis of high molecular weight branched polyethylene. The molecular weights and branching densities could be tuned over a very wide range. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature. The branching densities were decreased with increasing the polymerization temperature.
文摘A series of homo and copolymers of styrene (ST) and 2-hydroxyethyl methacrylate (HEMA) in three different media (bulk, tetrahydrofuran, and benzene) have been investigated by free radical polymerization method. The samples obtained from the synthesis were characterized by Fourier Transform-Infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The results show that the synthesis of the polymers is more feasible under neat conditions rather than solvent directed reaction. Moreover, the DSC data shows that the polystyrene obtained is amorphous in nature and therefore displayed only a glass transition signal rather than crystallization and melting peaks. In addition, this study indicates that homolopolymerization of styrene via free radical polymerization tends to be preferable in less polar solvents like THF than in non-polar solvents like benzene. Benzene might destabilize the formation of the reactive radicals leading to the formation of the products. In summary, the homolpolymerization of styrene is more feasible than the homopolymerization 2-hydroxyethyl methacrylate under the experimental setup used. Styrene is more reactive than 2-hydroxyethyl methacrylate than free radical polymerization reaction due in part of the generation of the benzylic radical intermediate which is more stable leading to the formation of products than alkyl radical which are less stable. Furthermore, polymerization of styrene under neat conditions is preferable in solvent-assisted environments. The choice of solvent for the synthesis of these polymers is crucial and therefore the selection of solvent that leads to the formation of a more stable reaction intermediate is more favorable. It is worth noting that the structure of the proposed copolymer consists of a highly polar and hydrophilic monomer, 2-hydroxyethyl methacrylate and a highly non-polar and hydrophobic monomer, styrene. These functionalities constitute an amphiphilic copolymer with diverse characteristics. A plausible explanation underlying our observations is that the reaction conditions employed in the synthesis of these copolymers might not be the right route required under free radical polymerization.
基金The National Natural Science Foundation of China(No.20406016)the Project of Fujian Petrochemical Company of SIN-OPEC (No.MS/FJ-08-JS-15-2005-01).
文摘The elementary reactions of propylene polymerization catalyzed by conventional Ziegler-Natta catalysts was proposed according to the comprehensive view and without considering the effect of any impurity in the material on propylene polymerization. The Monte Carlo simulation technique was employed to investigate the kinetics of propylene polymerization in order to determine the validity of the stationary state assumption and the effects of the polymerization temperature on the polymerization. The simulated total amount of active species, which only increases quickly at the beginning of the polymerization, indicates that the stationary state assumption in the studied system is valid. Moreover, significant effects of polymerization temperature on the polymerization conversion, and the molecular weight and its distribution were also analyzed. The simulated results show that the consumption rate of propylene increases with the increase of polymerization temperature; the maximum values of the number-average degree of polymerization are constant at different polymerization temperatures, however, the peak appears earlier with the higher temperature; as the polymerization temperature increases, the average molecular weight decreases and the molecular weight distribution changes greatly.
基金Projects(21107032,51073072)supported by the National Natural Science Foundation of ChinaProjects(Y406469,Y4110555,Y4100745)supported by Natural Science Foundation of Zhejiang Province,ChinaProjects(2011AY1048-5,2011AY1030)supported by the Science Foundation of Jiaxing Science and Technology Bureau,China
文摘Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.
文摘The polymerization of styrene is monitored by pyrene excimer formation. The ratio of monomer to excimer intensities ( I m/ I e) of pyrene increases as polymerization proceeds. The increase of I m/ I e is ascribed to the increase of microviscosity surrounding the probes forming excimer during polymerization. The linear relationship between the changing rate of I m/ I e and the polymerization rate of styrene is obtained. Therefore, I m/ I e may be used to monitor the progress of the polymerization of styrene.
文摘The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.
基金V. ACKNOWLEDGMENTS This work was supported by the Innovative Research Team of green chemical technology in University of Heilongjiang Province, the Natural Science Foundation of Heilongjiang Province of China (No.B201007 and No.E201141), Harbin Innovation Talents of Science and Technology of Special Fund Project (No.2012RFQXG085), and Educational Commission of Heilongjiang Province of China (No.12521z008 and No.12511443).
文摘The gel polymer electrolyte containing N-propyl, methylpyrrolidinium bis((trifiuoromethyl) sulfonyl)imide (PYR13TFSI) with better performance is prepared by radical polymerization method. The interface status between the LiFePO4 electrode and the electrolyte is characterized by a scanning electron microscope and X-ray photoelectron spectroscopy (XPS). There is a layer of membrane on the gel electrolyte and perfect shell membranes on the surface of active LiFePO4 cluster, on the other hand, N and S photoelectron signals are observed in XPS spectra after charge-discharge cycles. The results show that the ionic liquids and unpolymerized methyl methacrylate incorporate into the electrode surface and form the SEI membrane with Li ion and electrons while the gel electrolyte contacts with the electrode. The formation process of the SEI membrane needs at least three cycles, the discharge capacity increases as the SEI membrane becomes sufficiently thick, which blocks further electron transfer, and the system may approach steady state. The performance of cell with ionic liquid gel polymer electrolyte is measured at different rate. The cells retain 132 mAh/g at 0.2 C, 128 mAh/g at 0.5 C, and 120 mAh/g at 1.0 C after 30 cycles with charge-discharge efficiency of ca. 98% at every rate.
文摘An improved method for preparing melamine cyanurate (MCA) based flame retardant polyamide 6 (FRPA6) materials has been proposed. This processing method, i.e., improved in situ polymerization, was used to synthesize flame retardant PA6. In situ formed MCA nanoparticles were supposed to be linked to PA6 chains in the ε-caprolactam hydrolytic polymerization system to obtain startype polymers for the first time. Through TEM photographs, it can be found that the in situ formed MCA nanoparticles with diametric size of less than 50 nm, are nanoscaled, highly uniformly dispersed in the PA6 matrix. Synthesized flame retardant PA6 have good fire performance which can achieve UL-94 V-0 rating at 1.6 mm thickness with the presence of 7.34 wt.% MCA in the matrix.
文摘Anionic polyacrylamide dispersions were prepared by dispersion polymerization in an aqueous salt medium, using acrylamide(AM) and acrylic acid(AA) as monomers and anionic polyelectrolytes as stabilizer. Effects of salt concentration, and molecular weight and concentration of stabilizers on the stability of the dispersions were investigated using a HAAKE rheometer and optical microscopy. The results showed that stable anionic polyacrylamide dispersions, consisting of smooth, spherical, polydisperse particles, could be obtained under the conditions of salt concentration ranging from 26 wt% to 30 wt%, concentration of stabilizers from 1.2 wt% to 1.8 wt%, and intrinsic viscosity of stabilizers from 2.98 dL·g^-1 to 3.74 dL·g^-1. The apparent viscosity of the stable dispersions changed very little with the shear rate, showing Newton fluid behavior.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50403017).
文摘Monodisperse micron-sized polyacrylamide (PAM) particles with a regular shape have been successfully prepared through dispersion polymerization of the monomer using a rotary reactor. FTIR and NMR spectroscopic results demonstrated the formation of PAM. POM and TEM observations revealed that PAM particles had a regular shape and good dispersity. A thick layer of surfactant (PVP) still existed on PAM particles after multiple centrifugation and ultrasonic re-dispersion in ethanol, which indicates a strong interaction between PVP and PAM. The effects of various polymerization factors on the average size of PAM particles have also been studied.
文摘A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecular weight of the polyethylene produced was Mn = 1.29x10(5). about 3-4 times those of corresponding homogeneous zirconocenes. The polymer-supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features, such as adaptable to gas phase and slurry processes: easy to prepare in low cost: relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.
基金supported by the National Natural Science Foundation of China(Nos.20774008,20934001) and SINOPEC
文摘The cationic polymerizations of isobutylene (IB) coinitiated by AlCl3 were carried out in solvent mixture of nhexane/methylene dichloride (n-hex/CH2Cl2) of 60/40 V/V in the presence of ethyl benzoate (EB) at various temperatures range from -80℃ to -30℃. The effects of EB concentration ([EB]) and polymerization temperature on monomer conversion, weight-average molecular weight (Mw) and molecular weight distribution (MWD, Mw/Mn) of polyisobutylene (PIB) products were investigated. The rate of polymerization decreased while Mw of PIB products increased with increasing [EB]. The polymers with high molecular weight could be prepared in the presence of a suitable amount of EB. Significantly, the polymers with high Mw of 80.2 × 10^4 and 65.4 × 10^4 could be produced at -80℃ and -70℃ at [EB] = 0.24 × 10^3 mol/L respectively, which were much higher than that (Mw = 57.9 × 10^4) of PIB prepared at -100℃ in the absence ofEB. A simple but effective method for preparing the high molecular weight polyisobutylenes was developed in this work. It has been also found that the activation energy for propagation (Ep) depended on the polymerization temperature range in the presence of EB. An obvious inflection of the linear plots of lnXn versus 1/Tp occurred at the temperature range from -60℃ to -50℃ at four different concentrations of EB from 0.19 × 10^3 mol/L to 0.33× 10^3 tool/L, and thus the inflection temperature (Tinf) was in the range of -60℃ to -50℃. When [EB] was in the range of 0.24 × 10^3 mol/L to 0.33× 10^3 mol/L, Ep was determined to be around -12 kJ/mol when the polymerization was carried out at temperatures from -80℃ to Tinf and to be around -28 kJ/mol at temperatures from Tinf to -15℃ respectively.