According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calcul...According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calculating formulae were derived and the results were satisfactorily applied on the research works.展开更多
This study researches the effect of V-Nb on the growth of austenite grains in 17CrNiMo6 carburized gear steel. Results show that the carbonitride in V and Nb acts as second-phase particles in the steel, which can be u...This study researches the effect of V-Nb on the growth of austenite grains in 17CrNiMo6 carburized gear steel. Results show that the carbonitride in V and Nb acts as second-phase particles in the steel, which can be used to block the migration of grain boundaries and the thinning of the austenite grains. This causes the crystals in the V-Nb microalloy 17CrNiMo6 steel to coarsen and the temperature to rise, thus reducing the cost of the carbonization that follows processing on the gears.展开更多
This work aims at the development of carbon steel AISI 1536 through the microalloying addition of boron. Three grades of this steel with different content of boron up to 0.0055% were melted in 100 kg induction furnace...This work aims at the development of carbon steel AISI 1536 through the microalloying addition of boron. Three grades of this steel with different content of boron up to 0.0055% were melted in 100 kg induction furnace. The pro- duced steels were hardened at 960°C for 30 min., followed by tempering at different temperatures and durations. All hardened steels have martensite phase as illustrated with microstructures and X-ray diffraction. Hardness of all tem- pered steel samples was measured to calculate the activation energies of carbon migration through martensite phase. The results indicated that the activation energies of carbon migration through martensite phase decreases with the in- crease of boron content due to its positive effect on the crystallinity of martensite phase. Also, the results showed that the addition of boron up to 0.0023% can improve the steel properties at the lowest temperature and tempered time.展开更多
Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style...Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style="white-space:normal;font-family:""> the welding industry. The study was poised to unearth the fundamentals of carbon equivalent as applied in evaluating the weldability of steel. The study used </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">two-stage design approach to address the problem of carbon equivalence weldability of steel, thus, survey and experimental. Two different steels were tested to ascertain their chemical composition which could inform carbon equivalent calculation, and the results revealed microalloy and low alloy steels respectively. In subjecting the microalloy steel to carbon equivalent analyses of the AWS and IIW coefficients;revealed a value (CEV) = 0.11 each, suggesting that this microalloy steel has excellent weldability;no preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:""> is required. A successful welding operation on this steel does not depend on preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:"">.<b> </b>Also</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> the average results of the low alloy steel revealed a value (CEV) = 0.37 and 0.32 respectively, suggesting that this type of steel has very good weldability and may require </span><span style="white-space:normal;font-family:"">to </span><span style="white-space:normal;font-family:"">preheat. It is recommended that welders have </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">general idea about the weldability of steel with regard to carbon equivalent calculation. In addition</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> they should understand the chemical compositions of steels they are dealing with.展开更多
The kinetics of the isothermal precipitation of(Nb,V)CN in Nb-V alloys has been investi- gated by using the Formastor-press simulator and the extraction replica method.Under four deformation amounts(0,10,30,50%)and th...The kinetics of the isothermal precipitation of(Nb,V)CN in Nb-V alloys has been investi- gated by using the Formastor-press simulator and the extraction replica method.Under four deformation amounts(0,10,30,50%)and three temperatures(1100,1000,850℃), four types of kinetic curves were found.展开更多
For the great significance of the prediction of control parameters selected for hot-rolling and the evaluation of hot-rolling quality for the analysis of prod uction problems and production management, the selection o...For the great significance of the prediction of control parameters selected for hot-rolling and the evaluation of hot-rolling quality for the analysis of prod uction problems and production management, the selection of hot-rolling control parameters was studied for microalloy steel by following the neural network principle. An experimental scheme was first worked out for acquisition of sample data, in which a gleeble-1500 thermal simolator was used to obtain rolling temperature, strain, stain rate, and stress-strain curves. And consequently the aust enite grain sizes was obtained through microscopic observation. The experimental data was then processed through regression. By using the training network of BP algorithm, the mapping relationship between the hotrooling control parameters (rolling temperature, stain, and strain rate) and the microstructural paramete rs (austenite grain in size and flow stress) of microalloy steel was function appro ached for the establishment of a neural network-based model of the austeuite grain size and flow stress of microalloy steel. From the results of estimation made with the neural network based model, the hot-rolling control parameters can be effectively predicted.展开更多
In this study,the effect of vanadium on the microstructure and properties of the metastable austenitic stainless steel AISI 301LN was investigated.Results of the study show that the addition of vanadium can refine gra...In this study,the effect of vanadium on the microstructure and properties of the metastable austenitic stainless steel AISI 301LN was investigated.Results of the study show that the addition of vanadium can refine grains and increase the strength of AISI 301LN by solution treatment.After 60%cold-rolling reduction,the microstructure of the steel was composed of work-hardened austenite bands and deformation-inducedɑ′martensite.Considerable work-hardening and phase transformation strengthening occurred.After cold rolling and subsequent annealing,the deformation-inducedɑ′martensite was reversed into fine-grained austenite.The work-hardened austenite bands underwent recrystallization;however,the structure of the recrystallized austenite grains was coarser than that of the reversed ones.Simultaneously,the strength of the experimental steels decreased with the increase in annealing temperature.The pinning effect of precipitates of vanadium inhibited the growth of austenite grains.Thus,the desirable combination of strength and ductility was obtained by grain refinement.展开更多
The loading capacity of ultralarge container ships has reached 24000 TEUs so far,and to ensure the safe operation of these ships,the maxmium thickness of crack arrest steel used in the upper deck areas reaches 100 mm,...The loading capacity of ultralarge container ships has reached 24000 TEUs so far,and to ensure the safe operation of these ships,the maxmium thickness of crack arrest steel used in the upper deck areas reaches 100 mm,and crack arrest toughness(K_(ca))needs to be>8000 N/mm^(3)/2.The EH47 steel was employed to study the effect of Nb on the phase transformation of supercooled austenite in the continuous cooling process after rolling and the effect of Nb on microstructure and mechanical properties of the crack arrest steel plate.It was found that the addition of 0.02%Nb can inhibit the ferrite transformation,improve the steel plate strength,and reduce the strength inhomogeneity in the thickness direction.Industrial production of 100 mm-thick EH47 was carried out based on the function of Nb in EH47 steel,and the test results reveal that high-strength EH47 shipbuilding plates with high toughness,excellent fracture and crack arrest toughness,and good welding properties can be produced using Nb-microalloyed composition design and the thermal mechanical control process(TMCP);furthermore,the value of the crack arrest toughness reached 9450.7 N/mm^(3/2) at-10℃.展开更多
Influence of vanadium and/or niobium additions on delayed fracture behavior in high strength spring steel was studied by hydrogen permeation method and slow strain rate technique (8SRT), and its mechanism was analyz...Influence of vanadium and/or niobium additions on delayed fracture behavior in high strength spring steel was studied by hydrogen permeation method and slow strain rate technique (8SRT), and its mechanism was analyzed. The results show that apparent diffusion coefficient of hydrogen in microalloyed spring steels Nb-V-steel and Nb-steel is lower than that in non-microalloyed steel 60Si2MnA. Percentage of strength reduction in SSRT in air after precharged hydrogen of the microalloyed steels is smaller than that of 60Si2MnA. Addition of the microalloys changes the fracture characteristics. Thence, vanadium and/or niobium additions are a very effective and economy means to improve the hydrogen-induced delayed fracture resistance of high strength spring steel.展开更多
The hot working behavior especially dynamic recrystallization of low-carbon and medium-carbon vanadium microalloy steels has been studied by performing isothermally compression tests and Avrami analysis.The Avrami plo...The hot working behavior especially dynamic recrystallization of low-carbon and medium-carbon vanadium microalloy steels has been studied by performing isothermally compression tests and Avrami analysis.The Avrami plots of the two experiment steels have been constructed based on flow stress curves following a new approach (Jonas,et al.Acta Mater.,2009,57(2):2748-2756;Wu et al,Acta Metall.Sin.,2010,46(7):838-843).It is experimentally found that the carbon effect on dynamic recrystallization is opposite to each other in lower and higher strain ranges:Carbon causes a softening effect at low strain rates (0.01,0.1,and 1.0 s-1),and a hardening effect at high strain rates (10.0 and 30.0 s-1).Correspondingly,carbon promotes the dynamic recrystallization at low strain rates and retards the dynamic recrystallization at high strain rates in the experimental steels.The phenomenon is then tentatively explained based on the possible mechanisms of dynamic process at different strain rates.展开更多
The factors which influence center segregation of continuously cast slabs are obtained through analyzing the database of macrostructrue. It indicates that center segregation becomes severer with the increasing content...The factors which influence center segregation of continuously cast slabs are obtained through analyzing the database of macrostructrue. It indicates that center segregation becomes severer with the increasing content of carbon, phosphorus and sulfur; Center segregation will be reduced obviously if the content of manganese is higher than 1.5% and the ratio of Mn/S is higher than 300; High degree of superheat , high casting speed and increasing width of slabs will increase the degree of center segregation. Since center segregation below class B has little effect on the property of steel, hence, in order to low the ratio of center segregation of class B-1.0 down to 10%, several control strategies are presented as follows: the contents of carbon, phosphorus and sulfur must be focalized in lower range of steel grade demanded, but manganese upper operating range control. The referenced contents of the elements in molten steel are required like this: [C]【0.07%,[P]【0.01%,[S]【0.005%,[Mn]】1.5%,[Mn]/[S]】300; The degree of superheat should be lower than 24℃ and the casting speed should be defined to 1.0-1.1 m·min-1. At the same time, proper secondary cooling system of water distribution should be developed and the precision of continuous caster should be also improved.展开更多
In some research of microalloy steel, such as the precipitation behaviour and the precipitation strengthening of microalloy carbonitride (M(CN)phase)in ferrite, it is essential to know the accurate value of the interf...In some research of microalloy steel, such as the precipitation behaviour and the precipitation strengthening of microalloy carbonitride (M(CN)phase)in ferrite, it is essential to know the accurate value of the interfacial energy between M(CN )phase and ferrite. However, this energy cannot be directly measured because the average size of M(CN) particle is only 2-10 nm, thus the deepgoing researches concerned are seriously limited.展开更多
The production of microalloyed steels for oil and gas transmission pipelines has increased significantly over the past years.With more and more countries developing their own capabilities to produce pipeline steels to...The production of microalloyed steels for oil and gas transmission pipelines has increased significantly over the past years.With more and more countries developing their own capabilities to produce pipeline steels to support their own internal pipeline infrastructure development,there has been an increase of steel producers working to develop their own capabilities to produce microalloyed steels for this application.However,to achieve the desired mechanical property attributes for transmission pipeline applications utilizing a cost effective approach requires metallurgical optimization of the microalloyed steels.To achieve metallurgical optimization a basic understanding is required in the design of a cost effective alloy and then the proper processing of that alloy design to achieve the optimum microstructure/mechanical properties.In this sense,many producers in the world,especially those who have only recently,in the past 10 years,developed their capability to produce microalloyed transmission pipeline steels still do not achieve metallurgical optimization of their alloy and process.This results in yield losses due to failures,inefficient processing causing productivity losses and additional expensive additions of alloys to compensate for failures and process inefficiencies.Since the supplier of plate/coil has the largest percentage effect on the final cost of the pipe,the steel producer must understand proper alloy,microstructure,and process design to produce a uniform and stable plate/coil to be used in pipe production.This means that strength,toughness and microstructure must be uniform down the length,across the width and through the cross section.Metallurgical optimization is achieved when this uniformity is achieved with a cost effective approach.Counter to that,non-uniformity results in pipe forming,welding,expansion,mechanical property and production issues resulting in downgraded pipe and cost overruns in pipemaking.This paper will describe targets for plate/coil uniformity for pipe production and show examples of pipe issues when uniformity cannot be achieved.Key plate/coil attributes will be identified along with guidelines on alloy design and key processing parameters and targets that need to be considered to work toward metallurgical optimization.Examples will be used to illustrate the thought process in alloy/process design for metallurgical optimization.展开更多
文摘According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calculating formulae were derived and the results were satisfactorily applied on the research works.
文摘This study researches the effect of V-Nb on the growth of austenite grains in 17CrNiMo6 carburized gear steel. Results show that the carbonitride in V and Nb acts as second-phase particles in the steel, which can be used to block the migration of grain boundaries and the thinning of the austenite grains. This causes the crystals in the V-Nb microalloy 17CrNiMo6 steel to coarsen and the temperature to rise, thus reducing the cost of the carbonization that follows processing on the gears.
文摘This work aims at the development of carbon steel AISI 1536 through the microalloying addition of boron. Three grades of this steel with different content of boron up to 0.0055% were melted in 100 kg induction furnace. The pro- duced steels were hardened at 960°C for 30 min., followed by tempering at different temperatures and durations. All hardened steels have martensite phase as illustrated with microstructures and X-ray diffraction. Hardness of all tem- pered steel samples was measured to calculate the activation energies of carbon migration through martensite phase. The results indicated that the activation energies of carbon migration through martensite phase decreases with the in- crease of boron content due to its positive effect on the crystallinity of martensite phase. Also, the results showed that the addition of boron up to 0.0023% can improve the steel properties at the lowest temperature and tempered time.
文摘Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style="white-space:normal;font-family:""> the welding industry. The study was poised to unearth the fundamentals of carbon equivalent as applied in evaluating the weldability of steel. The study used </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">two-stage design approach to address the problem of carbon equivalence weldability of steel, thus, survey and experimental. Two different steels were tested to ascertain their chemical composition which could inform carbon equivalent calculation, and the results revealed microalloy and low alloy steels respectively. In subjecting the microalloy steel to carbon equivalent analyses of the AWS and IIW coefficients;revealed a value (CEV) = 0.11 each, suggesting that this microalloy steel has excellent weldability;no preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:""> is required. A successful welding operation on this steel does not depend on preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:"">.<b> </b>Also</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> the average results of the low alloy steel revealed a value (CEV) = 0.37 and 0.32 respectively, suggesting that this type of steel has very good weldability and may require </span><span style="white-space:normal;font-family:"">to </span><span style="white-space:normal;font-family:"">preheat. It is recommended that welders have </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">general idea about the weldability of steel with regard to carbon equivalent calculation. In addition</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> they should understand the chemical compositions of steels they are dealing with.
文摘The kinetics of the isothermal precipitation of(Nb,V)CN in Nb-V alloys has been investi- gated by using the Formastor-press simulator and the extraction replica method.Under four deformation amounts(0,10,30,50%)and three temperatures(1100,1000,850℃), four types of kinetic curves were found.
文摘For the great significance of the prediction of control parameters selected for hot-rolling and the evaluation of hot-rolling quality for the analysis of prod uction problems and production management, the selection of hot-rolling control parameters was studied for microalloy steel by following the neural network principle. An experimental scheme was first worked out for acquisition of sample data, in which a gleeble-1500 thermal simolator was used to obtain rolling temperature, strain, stain rate, and stress-strain curves. And consequently the aust enite grain sizes was obtained through microscopic observation. The experimental data was then processed through regression. By using the training network of BP algorithm, the mapping relationship between the hotrooling control parameters (rolling temperature, stain, and strain rate) and the microstructural paramete rs (austenite grain in size and flow stress) of microalloy steel was function appro ached for the establishment of a neural network-based model of the austeuite grain size and flow stress of microalloy steel. From the results of estimation made with the neural network based model, the hot-rolling control parameters can be effectively predicted.
文摘In this study,the effect of vanadium on the microstructure and properties of the metastable austenitic stainless steel AISI 301LN was investigated.Results of the study show that the addition of vanadium can refine grains and increase the strength of AISI 301LN by solution treatment.After 60%cold-rolling reduction,the microstructure of the steel was composed of work-hardened austenite bands and deformation-inducedɑ′martensite.Considerable work-hardening and phase transformation strengthening occurred.After cold rolling and subsequent annealing,the deformation-inducedɑ′martensite was reversed into fine-grained austenite.The work-hardened austenite bands underwent recrystallization;however,the structure of the recrystallized austenite grains was coarser than that of the reversed ones.Simultaneously,the strength of the experimental steels decreased with the increase in annealing temperature.The pinning effect of precipitates of vanadium inhibited the growth of austenite grains.Thus,the desirable combination of strength and ductility was obtained by grain refinement.
文摘The loading capacity of ultralarge container ships has reached 24000 TEUs so far,and to ensure the safe operation of these ships,the maxmium thickness of crack arrest steel used in the upper deck areas reaches 100 mm,and crack arrest toughness(K_(ca))needs to be>8000 N/mm^(3)/2.The EH47 steel was employed to study the effect of Nb on the phase transformation of supercooled austenite in the continuous cooling process after rolling and the effect of Nb on microstructure and mechanical properties of the crack arrest steel plate.It was found that the addition of 0.02%Nb can inhibit the ferrite transformation,improve the steel plate strength,and reduce the strength inhomogeneity in the thickness direction.Industrial production of 100 mm-thick EH47 was carried out based on the function of Nb in EH47 steel,and the test results reveal that high-strength EH47 shipbuilding plates with high toughness,excellent fracture and crack arrest toughness,and good welding properties can be produced using Nb-microalloyed composition design and the thermal mechanical control process(TMCP);furthermore,the value of the crack arrest toughness reached 9450.7 N/mm^(3/2) at-10℃.
基金Item Sponsored by CITIC-CBMM Niobium Steel Research and Development Projects of China(2007RMJS-D031)
文摘Influence of vanadium and/or niobium additions on delayed fracture behavior in high strength spring steel was studied by hydrogen permeation method and slow strain rate technique (8SRT), and its mechanism was analyzed. The results show that apparent diffusion coefficient of hydrogen in microalloyed spring steels Nb-V-steel and Nb-steel is lower than that in non-microalloyed steel 60Si2MnA. Percentage of strength reduction in SSRT in air after precharged hydrogen of the microalloyed steels is smaller than that of 60Si2MnA. Addition of the microalloys changes the fracture characteristics. Thence, vanadium and/or niobium additions are a very effective and economy means to improve the hydrogen-induced delayed fracture resistance of high strength spring steel.
基金the National Natural Science Foundation of China (NSFC Project No.51071019)the Vanadium International Technical Committee (VANITEC) for funding this work
文摘The hot working behavior especially dynamic recrystallization of low-carbon and medium-carbon vanadium microalloy steels has been studied by performing isothermally compression tests and Avrami analysis.The Avrami plots of the two experiment steels have been constructed based on flow stress curves following a new approach (Jonas,et al.Acta Mater.,2009,57(2):2748-2756;Wu et al,Acta Metall.Sin.,2010,46(7):838-843).It is experimentally found that the carbon effect on dynamic recrystallization is opposite to each other in lower and higher strain ranges:Carbon causes a softening effect at low strain rates (0.01,0.1,and 1.0 s-1),and a hardening effect at high strain rates (10.0 and 30.0 s-1).Correspondingly,carbon promotes the dynamic recrystallization at low strain rates and retards the dynamic recrystallization at high strain rates in the experimental steels.The phenomenon is then tentatively explained based on the possible mechanisms of dynamic process at different strain rates.
文摘The factors which influence center segregation of continuously cast slabs are obtained through analyzing the database of macrostructrue. It indicates that center segregation becomes severer with the increasing content of carbon, phosphorus and sulfur; Center segregation will be reduced obviously if the content of manganese is higher than 1.5% and the ratio of Mn/S is higher than 300; High degree of superheat , high casting speed and increasing width of slabs will increase the degree of center segregation. Since center segregation below class B has little effect on the property of steel, hence, in order to low the ratio of center segregation of class B-1.0 down to 10%, several control strategies are presented as follows: the contents of carbon, phosphorus and sulfur must be focalized in lower range of steel grade demanded, but manganese upper operating range control. The referenced contents of the elements in molten steel are required like this: [C]【0.07%,[P]【0.01%,[S]【0.005%,[Mn]】1.5%,[Mn]/[S]】300; The degree of superheat should be lower than 24℃ and the casting speed should be defined to 1.0-1.1 m·min-1. At the same time, proper secondary cooling system of water distribution should be developed and the precision of continuous caster should be also improved.
基金Project.supported by the National Natural Science Foundation of China
文摘In some research of microalloy steel, such as the precipitation behaviour and the precipitation strengthening of microalloy carbonitride (M(CN)phase)in ferrite, it is essential to know the accurate value of the interfacial energy between M(CN )phase and ferrite. However, this energy cannot be directly measured because the average size of M(CN) particle is only 2-10 nm, thus the deepgoing researches concerned are seriously limited.
文摘The production of microalloyed steels for oil and gas transmission pipelines has increased significantly over the past years.With more and more countries developing their own capabilities to produce pipeline steels to support their own internal pipeline infrastructure development,there has been an increase of steel producers working to develop their own capabilities to produce microalloyed steels for this application.However,to achieve the desired mechanical property attributes for transmission pipeline applications utilizing a cost effective approach requires metallurgical optimization of the microalloyed steels.To achieve metallurgical optimization a basic understanding is required in the design of a cost effective alloy and then the proper processing of that alloy design to achieve the optimum microstructure/mechanical properties.In this sense,many producers in the world,especially those who have only recently,in the past 10 years,developed their capability to produce microalloyed transmission pipeline steels still do not achieve metallurgical optimization of their alloy and process.This results in yield losses due to failures,inefficient processing causing productivity losses and additional expensive additions of alloys to compensate for failures and process inefficiencies.Since the supplier of plate/coil has the largest percentage effect on the final cost of the pipe,the steel producer must understand proper alloy,microstructure,and process design to produce a uniform and stable plate/coil to be used in pipe production.This means that strength,toughness and microstructure must be uniform down the length,across the width and through the cross section.Metallurgical optimization is achieved when this uniformity is achieved with a cost effective approach.Counter to that,non-uniformity results in pipe forming,welding,expansion,mechanical property and production issues resulting in downgraded pipe and cost overruns in pipemaking.This paper will describe targets for plate/coil uniformity for pipe production and show examples of pipe issues when uniformity cannot be achieved.Key plate/coil attributes will be identified along with guidelines on alloy design and key processing parameters and targets that need to be considered to work toward metallurgical optimization.Examples will be used to illustrate the thought process in alloy/process design for metallurgical optimization.