The ZM-1 tissue microarrayer designed by our groups is manufactured in stainless steel and brass and contains many features that make TMA (tissue microarray) paraffin blocks construction faster and more convenient. By...The ZM-1 tissue microarrayer designed by our groups is manufactured in stainless steel and brass and contains many features that make TMA (tissue microarray) paraffin blocks construction faster and more convenient. By means of ZM-1 tissue microarrayer, biopsy needles are used to punch the donor tissue specimens respectively. All the needles with the punched specimen cylinders are arrayed into the array-board, with an array of small holes dug to fit the needles. All the specimen cylinders arraying and the TMA paraffin block shaping are finished in only one step so that the specimen cylinders and the paraffin of the TMA block can very easily be incorporated and the recipient paraffin blocks need not be made in advance, and the paraffin used is the same as that for conventional pathology purpose. ZM-1 tissue microarrayer is easy to be manufactured, does not need any precision location system, and so is much cheaper than the currently used instrument. Our method’s relatively cheap and simple ZM-1 tissue microarrayer technique of constructing TMA paraffin block may facilitate popularization of the TMA technology.展开更多
Objective:In the realm of Class I pathogens,Burkholderia pseudomallei(BP)stands out for its propensity to induce severe pathogenicity.Investigating the intricate interactions between BP and host cells is imperative fo...Objective:In the realm of Class I pathogens,Burkholderia pseudomallei(BP)stands out for its propensity to induce severe pathogenicity.Investigating the intricate interactions between BP and host cells is imperative for comprehending the dynamics of BP infection and discerning biomarkers indicative of the host cell response process.Methods:mRNA extraction from BP-infected mouse macrophages constituted the initial step of our study.Employing gene expression arrays,the extracted RNA underwent conversion into digital signals.The percentile shift method facilitated data processing,with the identification of genes manifesting significant differences accomplished through the application of the t-test.Subsequently,a comprehensive analysis involving Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway was conducted on the differentially expressed genes(DEGs).Leveraging the ESTIMATE algorithm,gene signatures were utilized to compute risk scores for gene expression data.Support vector machine analysis and gene enrichment scores were instrumental in establishing correlations between biomarkers and macrophages,followed by an evaluation of the predictive power of the identified biomarkers.Results:The functional and pathway associations of the DEGs predominantly centered around G protein-coupled receptors.A noteworthy positive correlation emerged between the blue module,consisting of 416 genes,and the StromaScore.FZD4,identified through support vector machine analysis among intersecting genes,indicated a robust interaction with macrophages,suggesting its potential as a robust biomarker.FZD4 exhibited commendable predictive efficacy,with BP infection inducing its expression in both macrophages and mouse lung tissue.Western blotting in macrophages confirmed a significant upregulation of FZD4 expression from 0.5 to 24 h post-infection.In mouse lung tissue,FZD4 manifested higher expression in the cytoplasm of pulmonary epithelial cells in BP-infected lungs than in the control group.Conclusion:Thesefindings underscore the upregulation of FZD4 expression by BP in both macrophages and lung tissue,pointing to its prospective role as a biomarker in the pathogenesis of BP infection.展开更多
BACKGROUND Kidney disease is a severe complication of diabetes that often leads to end-stage renal disease.Early diagnosis is crucial for prevention or delay.However,the current diagnostic methods,with their limitatio...BACKGROUND Kidney disease is a severe complication of diabetes that often leads to end-stage renal disease.Early diagnosis is crucial for prevention or delay.However,the current diagnostic methods,with their limitations in detecting the disease in its early stages,underscore the urgency and importance of finding new solutions.miRNAs encapsulated inside urinary exosomes(UEs)have potential as early biomarkers for kidney diseases.The need for reference miRNAs for accurate interpretation currently limits their translational potential.AIM To identify consistently expressing reference miRNAs from UEs of controls and patients with type 2 diabetesmellitus(T2DM)and biopsy-confirmed kidney diseases.METHODS miRNA profiling was performed on UEs from 31 human urine samples using a rigorous and unbiased method.The UEs were isolated from urine samples collected from healthy individuals(n=6),patients with T2DM(n=13),and T2DM patients who also had kidney diseases(including diabetic nephropathy,n=5;membranous nephropathy,n=5;and IgA nephropathy,n=2)through differential ultracentrifugation.After characterizing the UEs,miRNA expression profiling using microarray technology was conducted.RESULTS Microarray data analysis identified 14 miRNAs that were consistently expressed in UEs from 31 human samples,representing various kidney conditions:diabetic controls,diabetic nephropathy,membrane nephropathy,IgA nephropathy,and healthy controls.Through in silico analysis,we determined that 10 of these miRNAs had significant potential to serve as reference genes in UEs.CONCLUSION We identified uniformly expressing UE miRNAs that could serve as reference genes kidney disease biomarkers.展开更多
Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. ...Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. c-Jun plays a key role in the repair of peripheral nerve injury. However, the precise underlying mechanism of c-Jun remains unclear. In this study, we performed microarray and bioinformatics analysis of mouse crush-injured sciatic nerves and found that the lncRNA Pvt1 was overexpressed in Schwann cells after peripheral nerve injury. Mechanistic studies revealed that Pvt1 increased c-Jun expression through sponging miRNA-214. We overexpressed Pvt1 in Schwann cells cultured in vitro and found that the proliferation and migration of Schwann cells were enhanced, and overexpression of miRNA-214 counteracted the effects of Pvt1 overexpression on Schwann cell proliferation and migration. We conducted in vivo analyses and injected Schwann cells overexpressing Pvt1 into injured sciatic nerves of mice. Schwann cells overexpressing Pvt1 enhanced the regeneration of injured sciatic nerves following peripheral nerve injury and the locomotor function of mice was improved. Our findings reveal the role of lncRNAs in the repair of peripheral nerve injury and highlight lncRNA Pvt1 as a novel potential treatment target for peripheral nerve injury.展开更多
BACKGROUND The prognostic assessment of patients after surgical resection of gastric cancer(GC)patients is critical.However,the role of the circadian clock gene NPAS2 expression in GC remains unknown.AIM To explore th...BACKGROUND The prognostic assessment of patients after surgical resection of gastric cancer(GC)patients is critical.However,the role of the circadian clock gene NPAS2 expression in GC remains unknown.AIM To explore the relationship between NPAS2 and the survival prognosis of GC patients and clarify its role in evaluating GC prognosis.METHODS The tumor tissues and clinical data of 101 patients with GC were collected retrospectively.Immunohistochemical staining(IHC)was used to detect the expression of NPAS2 protein in GC and adjacent tissues.Univariate and multivariate Cox regression analysis was used to determine the independent prognostic factors of GC,and a nomogram prediction model was established.The receiver operating characteristic(ROC)curve,the ROC area under the curve,the calibration curve,and C-index were used to evaluate the predictive effectiveness of the model.Kaplan Meier analysis was used to compare the risk stratification of subgroups according to the median score in the nomogram model of each patient.RESULTS Microarray IHC analysis showed that the positive rate of NPAS2 protein expression in GC tissues was 65.35%,which was significantly higher than 30.69%in adjacent tissues.The high expression of NPAS2 was correlated with tumor-node-metastasis(TNM)stage(P<0.05),pN stage(P<0.05),metastasis(P<0.05),venous invasion(P<0.05),lymphatic invasion(P<0.05),and lymph node positive(P<0.05)of GC.Kaplan Meier survival analysis showed that the 3-year overall survival(OS)of patients with high NPAS2 expression was significantly shortened(P<0.0001).Univariate and multivariate COX regression analysis showed that TNM stage(P=0.009),metastasis(P=0.009),and NPAS2 expression(P=0.020)were independent prognostic factors of OS in GC patients for 3 years.The nomogram prediction model based on independent prognostic factors has a C-Index of 0.740(95%CI:0.713-0.767).Furthermore,subgroup analysis showed that the 3-year OS time of the high-risk group was significantly lower than that of the low-risk group(P<0.0001).CONCLUSION NPAS2 is highly expressed in GC tissues and is closely related to worse OS in patients.Therefore,the evaluation of NPAS2 expression may be a potential marker for GC prognosis evaluation.Notably,the nomogram model based on NPAS2 can improve the accuracy of GC prognosis prediction and assist clinicians in postoperative patient management and decision-making.展开更多
BACKGROUND Cataracts remain a prime reason for visual disturbance and blindness all over the world,despite the capacity for successful surgical replacement with artificial lenses.Diabetic cataract(DC),a metabolic comp...BACKGROUND Cataracts remain a prime reason for visual disturbance and blindness all over the world,despite the capacity for successful surgical replacement with artificial lenses.Diabetic cataract(DC),a metabolic complication,usually occurs at an earlier age and progresses faster than age-related cataracts.Evidence has linked N6-methyladenosine(m6A)to DC progression.However,there exists a lack of understanding regarding RNA m6A modifications and the role of m6A in DC pathogenesis.AIM To elucidate the role played by altered m6A and differentially expressed mRNAs(DEmRNAs)in DC.METHODS Anterior lens capsules were collected from the control subjects and patients with DC.M6A epitranscriptomic microarray was performed to investigate the altered m6A modifications and determine the DEmRNAs.Through Gene Ontology and pathway enrichment(Kyoto Encyclopedia of Genes and Genomes)analyses,the potential role played by dysregulated m6A modification was predicted.Real-time polymerase chain reaction was further carried out to identify the dysregulated expression of RNA methyltransferases,demethylases,and readers.RESULTS Increased m6A abundance levels were found in the total mRNA of DC samples.Bioinformatics analysis predicted that ferroptosis pathways could be associated with m6A-modified mRNAs.The levels of five methylation-related genes-RBM15,WTAP,ALKBH5,FTO,and YTHDF1-were upregulated in DC samples.Upregulation of RBM15 expression was verified in SRA01/04 cells with high-glucose medium and in samples from DC patients.CONCLUSION M6a mRNA modifications may be involved in DC progression via the ferroptosis pathway,rendering novel insights into therapeutic strategies for DC.展开更多
Acute leukemia is an aggressive disease that has high mortality rates worldwide.The error rate can be as high as 40%when classifying acute leukemia into its subtypes.So,there is an urgent need to support hematologists...Acute leukemia is an aggressive disease that has high mortality rates worldwide.The error rate can be as high as 40%when classifying acute leukemia into its subtypes.So,there is an urgent need to support hematologists during the classification process.More than two decades ago,researchers used microarray gene expression data to classify cancer and adopted acute leukemia as a test case.The high classification accuracy they achieved confirmed that it is possible to classify cancer subtypes using microarray gene expression data.Ensemble machine learning is an effective method that combines individual classifiers to classify new samples.Ensemble classifiers are recognized as powerful algorithms with numerous advantages over traditional classifiers.Over the past few decades,researchers have focused a great deal of attention on ensemble classifiers in a wide variety of fields,including but not limited to disease diagnosis,finance,bioinformatics,healthcare,manufacturing,and geography.This paper reviews the recent ensemble classifier approaches utilized for acute leukemia gene expression data classification.Moreover,a framework for classifying acute leukemia gene expression data is proposed.The pairwise correlation gene selection method and the Rotation Forest of Bayesian Networks are both used in this framework.Experimental outcomes show that the classification accuracy achieved by the acute leukemia ensemble classifiers constructed according to the suggested framework is good compared to the classification accuracy achieved in other studies.展开更多
Autism Spectrum Disorder(ASD)is a complicated neurodevelopmen-tal disorder that is often identified in toddlers.The microarray data is used as a diagnostic tool to identify the genetics of the disorder.However,microarr...Autism Spectrum Disorder(ASD)is a complicated neurodevelopmen-tal disorder that is often identified in toddlers.The microarray data is used as a diagnostic tool to identify the genetics of the disorder.However,microarray data is large and has a high volume.Consequently,it suffers from the problem of dimensionality.In microarray data,the sample size and variance of the gene expression will lead to overfitting and misclassification.Identifying the autism gene(feature)subset from microarray data is an important and challenging research area.It has to be efficiently addressed to improve gene feature selection and classification.To overcome the challenges,a novel Intelligent Hybrid Ensem-ble Gene Selection(IHEGS)model is proposed in this paper.The proposed model integrates the intelligence of different feature selection techniques over the data partitions.In this model,the initial gene selection is carried out by data perturba-tion,and thefinal autism gene subset is obtained by functional perturbation,which reduces the problem of dimensionality in microarray data.The functional perturbation module employs three meta-heuristic swarm intelligence-based tech-niques for gene selection.The obtained gene subset is validated by the Deep Neural Network(DNN)model.The proposed model is implemented using python with six National Center for Biotechnology Information(NCBI)gene expression datasets.From the comparative study with other existing state-of-the-art systems,the proposed model provides stable results in terms of feature selection and clas-sification accuracy.展开更多
Hypertension and metabolic syndrome, both of which increase with age, are multifactorial disorders. Their etiology is complex, making it challenging to isolate involved genes. This study aimed to characterize the hepa...Hypertension and metabolic syndrome, both of which increase with age, are multifactorial disorders. Their etiology is complex, making it challenging to isolate involved genes. This study aimed to characterize the hepatic gene expression in spontaneously hypertensive rats (SHR) at different ages. Blood pressure in SHR was determined by tail-cuff method at one and three months of age. Hepatic RNA was isolated and gene expression was compared using microarrays. Comparison between SHR and normotensive rats revealed significant variation in gene expression: 98 genes were upregulated and 122 were downregulated in SHR;while 88 genes were upregulated and 139 genes were downregulated in age-matched normotensive rats. Furthermore, within the SHR group, 110 genes were found to be upregulated and 168 genes downregulated across different ages. Analyses via the Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathways revealed that several genes are potentially implicated in both, hypertension and metabolic syndrome. The results suggest that SHR display variations in gene expression due to aging, and when compared to normotensive rats. These variations could contribute to the development of hypertension and metabolic syndrome. Microarray studies involving older rats are necessary to further validate these findings.展开更多
Chronic obstructive pulmonary disease(COPD)is incurable chronic disease which kills 3.3 million each year worldwide.Number of global cases of COPD is steadily rising alongside with life expectancy,disproportionally hi...Chronic obstructive pulmonary disease(COPD)is incurable chronic disease which kills 3.3 million each year worldwide.Number of global cases of COPD is steadily rising alongside with life expectancy,disproportionally hitting middle-income countries like Russia and China,in such conditions,new approaches to the COPD management are desperately needed.DNA microarray technology is a powerful genomic tool that has the potential to uncover underlying COPD biological alteration and brings up revolutionized treatment option to clinicians.We executed systematic review studies of studies published in last 10 years regarding DNA microarray application in COPD management,with complacence to PRISMA criteria and using PubMed and Medline data bases as data source.Out of 920 identified papers,39 were included in the final analysis.We concluded that Genome-wide expression profiling using DNA microarray technology has great potential in enhancing COPD management.Current studied proofed this method is reliable and possesses many potential applications such as individual at risk of COPD development recognition,early diagnosis of disease,COPD phenotype identification,exacerbation prediction,personalized treatment optioning and prospect of oncogenesis evaluation in patients with COPD.Despite all the proofed benefits of this technology,researchers are still in the early stage of exploring it’s potential.Therefore,large clinical trials are still needed to set up standard for DNA microarray techniques usage implementation in COPD management guidelines,subsequently giving opportunity to clinicians for controlling or even eliminating COPD entirely.展开更多
BACKGROUND Burkitt lymphoma(BL)is an exceptionally aggressive malignant neoplasm that arises from either the germinal center or post-germinal center B cells.Patients with BL often present with rapid tumor growth and r...BACKGROUND Burkitt lymphoma(BL)is an exceptionally aggressive malignant neoplasm that arises from either the germinal center or post-germinal center B cells.Patients with BL often present with rapid tumor growth and require high-intensity multidrug therapy combined with adequate intrathecal chemotherapy prophylaxis,however,a standard treatment program for BL has not yet been established.It is important to identify biomarkers for predicting the prognosis of BLs and discriminating patients who might benefit from the therapy.Microarray data and sequencing information from public databases could offer opportunities for the discovery of new diagnostic or therapeutic targets.AIM To identify hub genes and perform gene ontology(GO)and survival analysis in BL.METHODS Gene expression profiles and clinical traits of BL patients were collected from the Gene Expression Omnibus database.Weighted gene co-expression network analysis(WGCNA)was applied to construct gene co-expression modules,and the cytoHubba tool was used to find the hub genes.Then,the hub genes were analyzed using GO and Kyoto Encyclopedia of Genes and Genomes analysis.Additionally,a Protein-Protein Interaction network and a Genetic Interaction network were constructed.Prognostic candidate genes were identified through overall survival analysis.Finally,a nomogram was established to assess the predictive value of hub genes,and drug-gene interactions were also constructed.RESULTS In this study,we obtained 8 modules through WGCNA analysis,and there was a significant correlation between the yellow module and age.Then we identified 10 hub genes(SRC,TLR4,CD40,STAT3,SELL,CXCL10,IL2RA,IL10RA,CCR7 and FCGR2B)by cytoHubba tool.Within these hubs,two genes were found to be associated with OS(CXCL10,P=0.029 and IL2RA,P=0.0066)by survival analysis.Additionally,we combined these two hub genes and age to build a nomogram.Moreover,the drugs related to IL2RA and CXCL10 might have a potential therapeutic role in relapsed and refractory BL.CONCLUSION From WGCNA and survival analysis,we identified CXCL10 and IL2RA that might be prognostic markers for BL.展开更多
MicroRNAs (miRNAs) are endogenous -22 nucleofide-long noncoding RNAs. In this study, to investigate miRNA expression profiles and their functions in mammary gland development, we have used microarray as well as qRT-...MicroRNAs (miRNAs) are endogenous -22 nucleofide-long noncoding RNAs. In this study, to investigate miRNA expression profiles and their functions in mammary gland development, we have used microarray as well as qRT-PCR, to analyze the miRNA expression changes along the murine mammary cycle during pregnancy, particularly on transition from pregnancy to lactation. It shows that every developmental stage of the mammary gland has its own mjRNA expression pattern. Compared with virgin and involution, some miRNAs such as miR-138 and miR-431 are downregulated, whereas, some miRNAs such as miR-133 and miR-133a-133b are upregulated during pregnancy and lactation. These results indicate that miRNAs are functionally involved in mammary gland development.展开更多
Objective: To investigate the role of collagen IV and PAS positive substancesecreted by tumor cells in vasculogenic mimicry (VM) and the effects of VM on tumor cells expressingVEGF. Methods: 158 cases of bi-direction ...Objective: To investigate the role of collagen IV and PAS positive substancesecreted by tumor cells in vasculogenic mimicry (VM) and the effects of VM on tumor cells expressingVEGF. Methods: 158 cases of bi-direction differential malignant tumor specimens withparaffin-embedded were enrolled into our study and made tissue microarray which were dual-stainedwith CD31-PAS and stained with collagen IV. The difference of the areas and distribution withpattern surrounded by between CD31 and PAS positive respectively were identified via grid-counting,as well as the difference of VEGF expression with VE absent and present. Results: The basementmembrane of VM was both PAS and collagen IV positive. VEGF expression in the bi-directiondifferential malignant tumor was higher VM-absent than VM-present and the difference wasstatistically significance in malignant melanoma and alveolar rhabdomyosarcoma (P 【 0.05).Conclusion: PAS positive substance and collagen IV compose the wall of VE and VE could provide theoxygen and nutrition for tumor growth and progression.展开更多
基金Project (No. G1998051200) supported by the National Basic Re-search Program (973) of China
文摘The ZM-1 tissue microarrayer designed by our groups is manufactured in stainless steel and brass and contains many features that make TMA (tissue microarray) paraffin blocks construction faster and more convenient. By means of ZM-1 tissue microarrayer, biopsy needles are used to punch the donor tissue specimens respectively. All the needles with the punched specimen cylinders are arrayed into the array-board, with an array of small holes dug to fit the needles. All the specimen cylinders arraying and the TMA paraffin block shaping are finished in only one step so that the specimen cylinders and the paraffin of the TMA block can very easily be incorporated and the recipient paraffin blocks need not be made in advance, and the paraffin used is the same as that for conventional pathology purpose. ZM-1 tissue microarrayer is easy to be manufactured, does not need any precision location system, and so is much cheaper than the currently used instrument. Our method’s relatively cheap and simple ZM-1 tissue microarrayer technique of constructing TMA paraffin block may facilitate popularization of the TMA technology.
基金The study was supported by Yuying Program Incubation Project of General Hospital of Center Theater(ZZYFH202104)Wuhan Young and Middle-Aged Medical Backbone Talent Project 2020(2020-55)Logistics Research Program Project 2019(CLB19J029).
文摘Objective:In the realm of Class I pathogens,Burkholderia pseudomallei(BP)stands out for its propensity to induce severe pathogenicity.Investigating the intricate interactions between BP and host cells is imperative for comprehending the dynamics of BP infection and discerning biomarkers indicative of the host cell response process.Methods:mRNA extraction from BP-infected mouse macrophages constituted the initial step of our study.Employing gene expression arrays,the extracted RNA underwent conversion into digital signals.The percentile shift method facilitated data processing,with the identification of genes manifesting significant differences accomplished through the application of the t-test.Subsequently,a comprehensive analysis involving Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway was conducted on the differentially expressed genes(DEGs).Leveraging the ESTIMATE algorithm,gene signatures were utilized to compute risk scores for gene expression data.Support vector machine analysis and gene enrichment scores were instrumental in establishing correlations between biomarkers and macrophages,followed by an evaluation of the predictive power of the identified biomarkers.Results:The functional and pathway associations of the DEGs predominantly centered around G protein-coupled receptors.A noteworthy positive correlation emerged between the blue module,consisting of 416 genes,and the StromaScore.FZD4,identified through support vector machine analysis among intersecting genes,indicated a robust interaction with macrophages,suggesting its potential as a robust biomarker.FZD4 exhibited commendable predictive efficacy,with BP infection inducing its expression in both macrophages and mouse lung tissue.Western blotting in macrophages confirmed a significant upregulation of FZD4 expression from 0.5 to 24 h post-infection.In mouse lung tissue,FZD4 manifested higher expression in the cytoplasm of pulmonary epithelial cells in BP-infected lungs than in the control group.Conclusion:Thesefindings underscore the upregulation of FZD4 expression by BP in both macrophages and lung tissue,pointing to its prospective role as a biomarker in the pathogenesis of BP infection.
基金Supported by the Indian Council of Medical Research,Coord/7(1)/CAREKD/2018/NCD-II,No.5/4/7-12/13/NCD-IIDDM was supported by a fellowship from the Council of Scientific and Industrial Research,India,No.619/(CSIR-UGC NET DEC.2018).
文摘BACKGROUND Kidney disease is a severe complication of diabetes that often leads to end-stage renal disease.Early diagnosis is crucial for prevention or delay.However,the current diagnostic methods,with their limitations in detecting the disease in its early stages,underscore the urgency and importance of finding new solutions.miRNAs encapsulated inside urinary exosomes(UEs)have potential as early biomarkers for kidney diseases.The need for reference miRNAs for accurate interpretation currently limits their translational potential.AIM To identify consistently expressing reference miRNAs from UEs of controls and patients with type 2 diabetesmellitus(T2DM)and biopsy-confirmed kidney diseases.METHODS miRNA profiling was performed on UEs from 31 human urine samples using a rigorous and unbiased method.The UEs were isolated from urine samples collected from healthy individuals(n=6),patients with T2DM(n=13),and T2DM patients who also had kidney diseases(including diabetic nephropathy,n=5;membranous nephropathy,n=5;and IgA nephropathy,n=2)through differential ultracentrifugation.After characterizing the UEs,miRNA expression profiling using microarray technology was conducted.RESULTS Microarray data analysis identified 14 miRNAs that were consistently expressed in UEs from 31 human samples,representing various kidney conditions:diabetic controls,diabetic nephropathy,membrane nephropathy,IgA nephropathy,and healthy controls.Through in silico analysis,we determined that 10 of these miRNAs had significant potential to serve as reference genes in UEs.CONCLUSION We identified uniformly expressing UE miRNAs that could serve as reference genes kidney disease biomarkers.
基金supported by the National Natural Science Foundation of China,No. 81801213 (to BP)Xuzhou Special Fund for Promoting Scientific and Technological Innovation,Nos. KC21177 (to BP),KC21195 (to HF)Science and Technology Project of Yili Kazak Autonomous Prefecture,No. YZ2019D006 (to HF)。
文摘Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. c-Jun plays a key role in the repair of peripheral nerve injury. However, the precise underlying mechanism of c-Jun remains unclear. In this study, we performed microarray and bioinformatics analysis of mouse crush-injured sciatic nerves and found that the lncRNA Pvt1 was overexpressed in Schwann cells after peripheral nerve injury. Mechanistic studies revealed that Pvt1 increased c-Jun expression through sponging miRNA-214. We overexpressed Pvt1 in Schwann cells cultured in vitro and found that the proliferation and migration of Schwann cells were enhanced, and overexpression of miRNA-214 counteracted the effects of Pvt1 overexpression on Schwann cell proliferation and migration. We conducted in vivo analyses and injected Schwann cells overexpressing Pvt1 into injured sciatic nerves of mice. Schwann cells overexpressing Pvt1 enhanced the regeneration of injured sciatic nerves following peripheral nerve injury and the locomotor function of mice was improved. Our findings reveal the role of lncRNAs in the repair of peripheral nerve injury and highlight lncRNA Pvt1 as a novel potential treatment target for peripheral nerve injury.
文摘BACKGROUND The prognostic assessment of patients after surgical resection of gastric cancer(GC)patients is critical.However,the role of the circadian clock gene NPAS2 expression in GC remains unknown.AIM To explore the relationship between NPAS2 and the survival prognosis of GC patients and clarify its role in evaluating GC prognosis.METHODS The tumor tissues and clinical data of 101 patients with GC were collected retrospectively.Immunohistochemical staining(IHC)was used to detect the expression of NPAS2 protein in GC and adjacent tissues.Univariate and multivariate Cox regression analysis was used to determine the independent prognostic factors of GC,and a nomogram prediction model was established.The receiver operating characteristic(ROC)curve,the ROC area under the curve,the calibration curve,and C-index were used to evaluate the predictive effectiveness of the model.Kaplan Meier analysis was used to compare the risk stratification of subgroups according to the median score in the nomogram model of each patient.RESULTS Microarray IHC analysis showed that the positive rate of NPAS2 protein expression in GC tissues was 65.35%,which was significantly higher than 30.69%in adjacent tissues.The high expression of NPAS2 was correlated with tumor-node-metastasis(TNM)stage(P<0.05),pN stage(P<0.05),metastasis(P<0.05),venous invasion(P<0.05),lymphatic invasion(P<0.05),and lymph node positive(P<0.05)of GC.Kaplan Meier survival analysis showed that the 3-year overall survival(OS)of patients with high NPAS2 expression was significantly shortened(P<0.0001).Univariate and multivariate COX regression analysis showed that TNM stage(P=0.009),metastasis(P=0.009),and NPAS2 expression(P=0.020)were independent prognostic factors of OS in GC patients for 3 years.The nomogram prediction model based on independent prognostic factors has a C-Index of 0.740(95%CI:0.713-0.767).Furthermore,subgroup analysis showed that the 3-year OS time of the high-risk group was significantly lower than that of the low-risk group(P<0.0001).CONCLUSION NPAS2 is highly expressed in GC tissues and is closely related to worse OS in patients.Therefore,the evaluation of NPAS2 expression may be a potential marker for GC prognosis evaluation.Notably,the nomogram model based on NPAS2 can improve the accuracy of GC prognosis prediction and assist clinicians in postoperative patient management and decision-making.
基金Supported by the National Natural Science Foundation of China,No.82171039.
文摘BACKGROUND Cataracts remain a prime reason for visual disturbance and blindness all over the world,despite the capacity for successful surgical replacement with artificial lenses.Diabetic cataract(DC),a metabolic complication,usually occurs at an earlier age and progresses faster than age-related cataracts.Evidence has linked N6-methyladenosine(m6A)to DC progression.However,there exists a lack of understanding regarding RNA m6A modifications and the role of m6A in DC pathogenesis.AIM To elucidate the role played by altered m6A and differentially expressed mRNAs(DEmRNAs)in DC.METHODS Anterior lens capsules were collected from the control subjects and patients with DC.M6A epitranscriptomic microarray was performed to investigate the altered m6A modifications and determine the DEmRNAs.Through Gene Ontology and pathway enrichment(Kyoto Encyclopedia of Genes and Genomes)analyses,the potential role played by dysregulated m6A modification was predicted.Real-time polymerase chain reaction was further carried out to identify the dysregulated expression of RNA methyltransferases,demethylases,and readers.RESULTS Increased m6A abundance levels were found in the total mRNA of DC samples.Bioinformatics analysis predicted that ferroptosis pathways could be associated with m6A-modified mRNAs.The levels of five methylation-related genes-RBM15,WTAP,ALKBH5,FTO,and YTHDF1-were upregulated in DC samples.Upregulation of RBM15 expression was verified in SRA01/04 cells with high-glucose medium and in samples from DC patients.CONCLUSION M6a mRNA modifications may be involved in DC progression via the ferroptosis pathway,rendering novel insights into therapeutic strategies for DC.
文摘Acute leukemia is an aggressive disease that has high mortality rates worldwide.The error rate can be as high as 40%when classifying acute leukemia into its subtypes.So,there is an urgent need to support hematologists during the classification process.More than two decades ago,researchers used microarray gene expression data to classify cancer and adopted acute leukemia as a test case.The high classification accuracy they achieved confirmed that it is possible to classify cancer subtypes using microarray gene expression data.Ensemble machine learning is an effective method that combines individual classifiers to classify new samples.Ensemble classifiers are recognized as powerful algorithms with numerous advantages over traditional classifiers.Over the past few decades,researchers have focused a great deal of attention on ensemble classifiers in a wide variety of fields,including but not limited to disease diagnosis,finance,bioinformatics,healthcare,manufacturing,and geography.This paper reviews the recent ensemble classifier approaches utilized for acute leukemia gene expression data classification.Moreover,a framework for classifying acute leukemia gene expression data is proposed.The pairwise correlation gene selection method and the Rotation Forest of Bayesian Networks are both used in this framework.Experimental outcomes show that the classification accuracy achieved by the acute leukemia ensemble classifiers constructed according to the suggested framework is good compared to the classification accuracy achieved in other studies.
文摘Autism Spectrum Disorder(ASD)is a complicated neurodevelopmen-tal disorder that is often identified in toddlers.The microarray data is used as a diagnostic tool to identify the genetics of the disorder.However,microarray data is large and has a high volume.Consequently,it suffers from the problem of dimensionality.In microarray data,the sample size and variance of the gene expression will lead to overfitting and misclassification.Identifying the autism gene(feature)subset from microarray data is an important and challenging research area.It has to be efficiently addressed to improve gene feature selection and classification.To overcome the challenges,a novel Intelligent Hybrid Ensem-ble Gene Selection(IHEGS)model is proposed in this paper.The proposed model integrates the intelligence of different feature selection techniques over the data partitions.In this model,the initial gene selection is carried out by data perturba-tion,and thefinal autism gene subset is obtained by functional perturbation,which reduces the problem of dimensionality in microarray data.The functional perturbation module employs three meta-heuristic swarm intelligence-based tech-niques for gene selection.The obtained gene subset is validated by the Deep Neural Network(DNN)model.The proposed model is implemented using python with six National Center for Biotechnology Information(NCBI)gene expression datasets.From the comparative study with other existing state-of-the-art systems,the proposed model provides stable results in terms of feature selection and clas-sification accuracy.
文摘Hypertension and metabolic syndrome, both of which increase with age, are multifactorial disorders. Their etiology is complex, making it challenging to isolate involved genes. This study aimed to characterize the hepatic gene expression in spontaneously hypertensive rats (SHR) at different ages. Blood pressure in SHR was determined by tail-cuff method at one and three months of age. Hepatic RNA was isolated and gene expression was compared using microarrays. Comparison between SHR and normotensive rats revealed significant variation in gene expression: 98 genes were upregulated and 122 were downregulated in SHR;while 88 genes were upregulated and 139 genes were downregulated in age-matched normotensive rats. Furthermore, within the SHR group, 110 genes were found to be upregulated and 168 genes downregulated across different ages. Analyses via the Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathways revealed that several genes are potentially implicated in both, hypertension and metabolic syndrome. The results suggest that SHR display variations in gene expression due to aging, and when compared to normotensive rats. These variations could contribute to the development of hypertension and metabolic syndrome. Microarray studies involving older rats are necessary to further validate these findings.
文摘Chronic obstructive pulmonary disease(COPD)is incurable chronic disease which kills 3.3 million each year worldwide.Number of global cases of COPD is steadily rising alongside with life expectancy,disproportionally hitting middle-income countries like Russia and China,in such conditions,new approaches to the COPD management are desperately needed.DNA microarray technology is a powerful genomic tool that has the potential to uncover underlying COPD biological alteration and brings up revolutionized treatment option to clinicians.We executed systematic review studies of studies published in last 10 years regarding DNA microarray application in COPD management,with complacence to PRISMA criteria and using PubMed and Medline data bases as data source.Out of 920 identified papers,39 were included in the final analysis.We concluded that Genome-wide expression profiling using DNA microarray technology has great potential in enhancing COPD management.Current studied proofed this method is reliable and possesses many potential applications such as individual at risk of COPD development recognition,early diagnosis of disease,COPD phenotype identification,exacerbation prediction,personalized treatment optioning and prospect of oncogenesis evaluation in patients with COPD.Despite all the proofed benefits of this technology,researchers are still in the early stage of exploring it’s potential.Therefore,large clinical trials are still needed to set up standard for DNA microarray techniques usage implementation in COPD management guidelines,subsequently giving opportunity to clinicians for controlling or even eliminating COPD entirely.
文摘BACKGROUND Burkitt lymphoma(BL)is an exceptionally aggressive malignant neoplasm that arises from either the germinal center or post-germinal center B cells.Patients with BL often present with rapid tumor growth and require high-intensity multidrug therapy combined with adequate intrathecal chemotherapy prophylaxis,however,a standard treatment program for BL has not yet been established.It is important to identify biomarkers for predicting the prognosis of BLs and discriminating patients who might benefit from the therapy.Microarray data and sequencing information from public databases could offer opportunities for the discovery of new diagnostic or therapeutic targets.AIM To identify hub genes and perform gene ontology(GO)and survival analysis in BL.METHODS Gene expression profiles and clinical traits of BL patients were collected from the Gene Expression Omnibus database.Weighted gene co-expression network analysis(WGCNA)was applied to construct gene co-expression modules,and the cytoHubba tool was used to find the hub genes.Then,the hub genes were analyzed using GO and Kyoto Encyclopedia of Genes and Genomes analysis.Additionally,a Protein-Protein Interaction network and a Genetic Interaction network were constructed.Prognostic candidate genes were identified through overall survival analysis.Finally,a nomogram was established to assess the predictive value of hub genes,and drug-gene interactions were also constructed.RESULTS In this study,we obtained 8 modules through WGCNA analysis,and there was a significant correlation between the yellow module and age.Then we identified 10 hub genes(SRC,TLR4,CD40,STAT3,SELL,CXCL10,IL2RA,IL10RA,CCR7 and FCGR2B)by cytoHubba tool.Within these hubs,two genes were found to be associated with OS(CXCL10,P=0.029 and IL2RA,P=0.0066)by survival analysis.Additionally,we combined these two hub genes and age to build a nomogram.Moreover,the drugs related to IL2RA and CXCL10 might have a potential therapeutic role in relapsed and refractory BL.CONCLUSION From WGCNA and survival analysis,we identified CXCL10 and IL2RA that might be prognostic markers for BL.
基金This work was supported by the Doctor Study Project of Heilongjiang Education in 2005.
文摘MicroRNAs (miRNAs) are endogenous -22 nucleofide-long noncoding RNAs. In this study, to investigate miRNA expression profiles and their functions in mammary gland development, we have used microarray as well as qRT-PCR, to analyze the miRNA expression changes along the murine mammary cycle during pregnancy, particularly on transition from pregnancy to lactation. It shows that every developmental stage of the mammary gland has its own mjRNA expression pattern. Compared with virgin and involution, some miRNAs such as miR-138 and miR-431 are downregulated, whereas, some miRNAs such as miR-133 and miR-133a-133b are upregulated during pregnancy and lactation. These results indicate that miRNAs are functionally involved in mammary gland development.
基金This work was partially supported by a grant from the National Natural Science Foundation of China (No. 30370378)
文摘Objective: To investigate the role of collagen IV and PAS positive substancesecreted by tumor cells in vasculogenic mimicry (VM) and the effects of VM on tumor cells expressingVEGF. Methods: 158 cases of bi-direction differential malignant tumor specimens withparaffin-embedded were enrolled into our study and made tissue microarray which were dual-stainedwith CD31-PAS and stained with collagen IV. The difference of the areas and distribution withpattern surrounded by between CD31 and PAS positive respectively were identified via grid-counting,as well as the difference of VEGF expression with VE absent and present. Results: The basementmembrane of VM was both PAS and collagen IV positive. VEGF expression in the bi-directiondifferential malignant tumor was higher VM-absent than VM-present and the difference wasstatistically significance in malignant melanoma and alveolar rhabdomyosarcoma (P 【 0.05).Conclusion: PAS positive substance and collagen IV compose the wall of VE and VE could provide theoxygen and nutrition for tumor growth and progression.